Parameter-free online learning via model selection

Dylan Foster, Satyen Kale, Mehryar Mohri, and Karthik Sridharan

djfoster@cs.cornell.edu, satyenkale@google.com, mohri@cs.nyu.edu, sridharan@cs.cornell.edu

Overview

Structural risk minimization for online convex optimization

How to do large-scale online/stochastic optimization without hyperparameters.

OCO and Online Gradient Descent

Online convex optimization protocol:

For t = 1 to n:

Select distribution $q_t \in \Delta(\mathcal{W})$ (where $\mathcal{W} \subseteq \mathbb{R}^d$ is constraint set).

Nature selects convex function $g_t : \mathcal{W} \to \mathbb{R}$.

Draw $w_t \sim q_t$ and incur loss $g_t(w_t)$.

End

Standard algorithm: online gradient descent. Suppose:

- $\mathcal{W} = \{ w \in \mathbb{R}^d \mid ||w||_2 \leq R \}$ and each g_t is 1-Lipschitz wrt $\|\cdot\|_2$.
- Predict with Online Gradient Descent [1]:

 $w_{t+1} = \operatorname{Proj}_{\mathcal{W}}(w_t - \eta \nabla g_t(w_t)),$

with $\eta = R/\sqrt{n}$.

OGD has regret:

$$\sum_{t=1}^{n} g_t(w_t) - \inf_{w \in \mathcal{W}} \sum_{t=1}^{n} g_t(w) \le R\sqrt{n}.$$

How to choose R?

Parameter-free learning

t=1

Solution [2, 3, 4, 5]: There are efficient (linear-time) algorithm achieving:

$$\sum_{t=1}^{n} g_t(w_t) - \sum_{t=1}^{n} g_t(w) \le (\|w\|_2 + 1) \sqrt{n \cdot \log((\|w\|_2 + 1)n)} \quad \forall w \in \mathbb{R}^d.$$

Same runtime as OGD + rate above is unimprovable.

This paper: Moving beyond ℓ_2 (efficiently)!

Results

Generalize to all norms

$$\sum_{t=1}^{n} g_t(w_t) - \sum_{t=1}^{n} g_t(w) \le (\|w\| + 1)\sqrt{n \cdot \log((\|w\| + 1)n)} \quad \forall w.$$

for any norm $\|\cdot\|$ where original (fixed-R) problem is learnable. Even ℓ_p analogue not known!

General structural bounds

$$\sum_{t=1}^{n} g_t(w_t) - \sum_{t=1}^{n} g_t(w) \le \mathbf{Comp}_n(w) \cdot \mathbf{Pen}(\mathbf{Comp}_n(w))$$

for abstract complexity $\mathbf{Comp}_n(w)$; allows arbitrary discrete or combinatorial structure.

Efficient meta-algorithm

- Efficient whenever original (parameter-dependent) problem has efficient algorithms.
 - can work in non-convex or non-parametric settings. \implies

Approach and key challenges

Theorem: Parameter-free mirror descent

Fix norm $\|\cdot\|$ with $\frac{1}{2}\|\cdot\|^2 \lambda$ -strongly convex. Then parameter-free mirror descent efficiently guarantees

$$\mathbb{E}\left[\sum_{t=1}^{n} g_t(w_t) - \sum_{t=1}^{n} g_t(w)\right] \le (\|w\| + 1)\sqrt{n \cdot \log((\|w\| + 1)n)/\lambda} \quad \forall w.$$

whenever each g_t is 1-Lipschitz w.r.t. dual norm $\|\cdot\|_{\star}$.

Idea #1: Learn best learning rate for OMD

- Fix norm $\|\cdot\|$ with $\frac{1}{2}\|\cdot\|^2 \lambda$ -strongly convex, let $\|\cdot\|_{\star}$ be the dual.
- Let $\mathcal{W}_k = \{ w \in \mathbb{R}^d \mid ||w|| \le 2^{k-1} \}, k \in 1, \dots, n+1.$
- Then ONLINE MIRROR DESCENT over \mathcal{W}_k guarantees

$$\sum_{t=1}^{n} g_t(w_t^k) - \inf_{w \in \mathcal{W}_k} \sum_{t=1}^{n} g_t(w) \le 2^{k-1} \sqrt{n/\lambda}$$

if $(g_t)_{t < n}$ are 1-Lipschitz wrt $\|\cdot\|_{\star}$.

Idea #2: Reduce to experts problem

Recall experts setting over N **experts:** For time $t = 1, \ldots, n$:

- Learner selects distribution $p_t \in \Delta_N$.
- Nature selects loss $\boldsymbol{g}_t \in \mathbb{R}^N$.
- Learner samples $i_t \sim p_t$ and experiences loss $g_t[i_t]$.

Regret:

$$\sum_{t=1}^{n} \mathbf{g}_{t}[i_{t}] - \min_{i \in [N]} \sum_{t=1}^{n} \mathbf{g}_{t}[i].$$

Applying to our setting:

- Experts: OMD instances $(w_t^k)_{k \in [N]}$ given above.
- Loss: $\mathbf{g}_t = (g_t(w_t^k))_{k \in [N]}$.
- Meta algorithm: Sample $i_t \sim p_t$ and play $w_t^{i_t}$.

Challenge:

- For our application, can have $|\mathbf{g}_t[i]| >> |\mathbf{g}_t[j]|$, e.g. 2^n vs. 2.
- Typical algorithms (eg: multiplicative weights) scale with $\|\mathbf{g}_t\|_{\infty}$.
- Can we ensure large coordinates don't dominate?

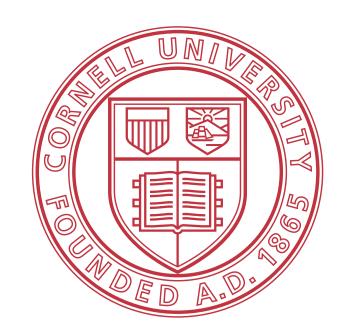
Idea #3: Multi-scale experts

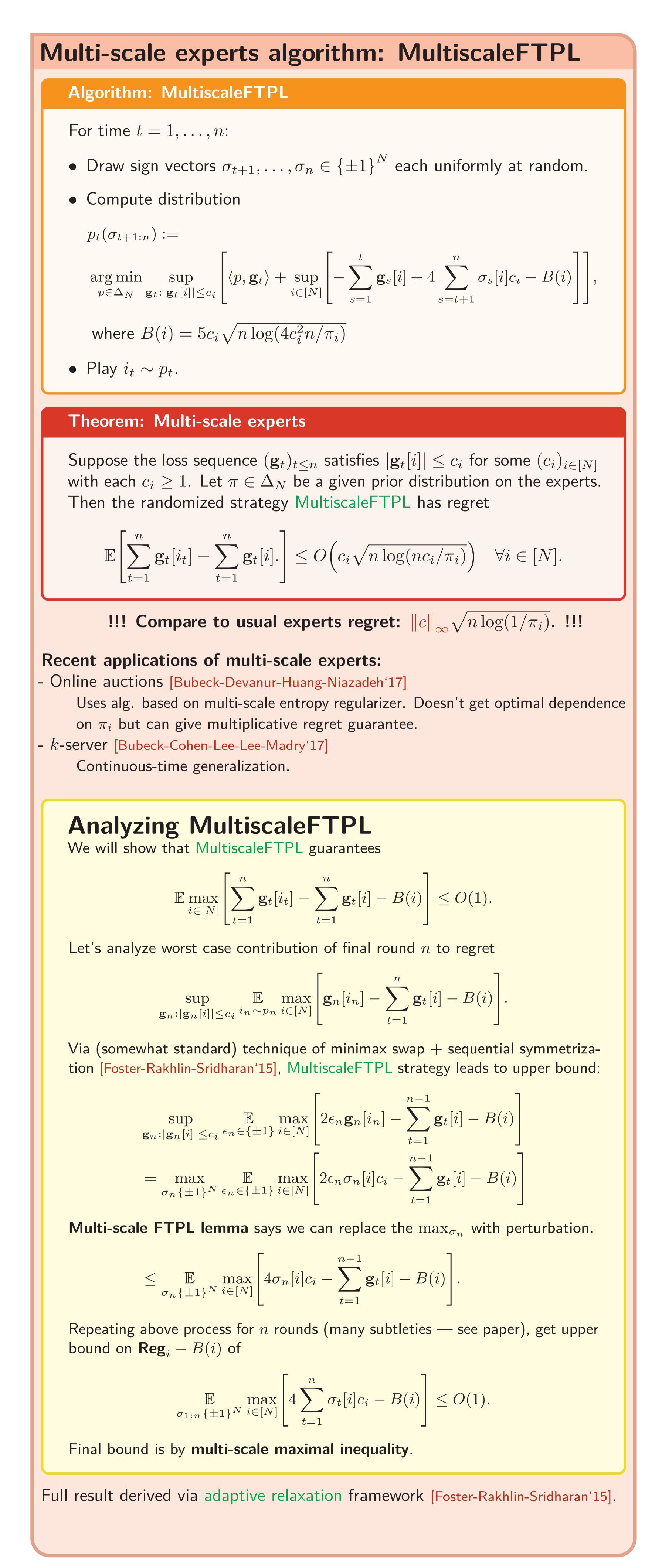
Applying MultiscaleFTPL (see next column) to our OMD setting gives:

$$\mathbb{E}\left[\sum_{t=1}^{n} g_t(w_t^{k_t}) - \inf_{\|w\| \le 2^k} \sum_{t=1}^{n} g_t(w)\right] \le 2^k \sqrt{\frac{n}{\lambda}} + C \cdot 2^k \sqrt{n \log(2^k n)} \ \forall k \le n.$$

\implies within constant factor of desired regret bound!

- For $1 \le ||w|| \le 2^n$ the RHS is within a constant factor.
- Write off $||w|| \leq 1$.
- RHS of desired bound is vacuous for $||w|| \ge 2^n$; no need to use algorithm.





Google

Key lemmas

Lemma: Multiscale Perturbation (cf. Rakhlin-Shamir-Sridharan'12))

For any $w \in \mathbb{R}^N$, any $c \in \mathbb{R}^N_+$,

 $\sup_{\sigma \in \{\pm 1\}^N} \mathbb{E}_{\epsilon \in \{\pm 1\}} \max_{i \in [N]} \{w_i + 2\epsilon \sigma_i c_i\} \le \mathbb{E}_{\sigma \in \{\pm 1\}^N} \max_{i \in [N]} \{w_i + 4\sigma_i c_i\}.$

Lemma: Multiscale Martingale Maximal Inequality

Let $(Z_t)_{t \leq n}$ be any martingale difference sequence in \mathbb{R}^N with $Z_t[i] \leq c_i$ almost surely and $\pi \in \Delta_N$ be fixed. Then

$$\mathbb{E}_{\substack{Z \ i \in [N]}} \left[2\sum_{t=1}^{n} Z_t[i] - 5c_i \sqrt{n \log(4c_i^2 n/\pi_i)} \right] \le O(1).$$

Supremum of scaled, offset random process.

- For each *i*, $|\sum_{t=1}^{n} Z_t[i]|$ is roughly $c_i \sqrt{n}$ whp.
- If we considered just $\mathbb{E}\sup_{i\in[N]}\sum_{t=1}^n Z_t[i]$, larger c_i terms would dominate.
- Offset $5c_i \sqrt{n \log(4c_i^2 n/\pi_i)}$ penalizes big c_i s.

More applications

Online PCA task: Predict PSD matrix $W_t \in \mathbb{R}^{d \times d}$, receive PSD matrix Y_t with $\lambda_{\max}(Y_t) \leq 1$, experience loss $\langle I - W_t, Y_t \rangle$.

Online PCA

There is a randomized algorithm for Online PCA that for all ranks $k \leq d$ simultaneously achieves

$$\mathbb{E}\left[\sum_{t=1}^{n} \langle I - W_t, Y_t \rangle - \min_{\substack{W \text{ proj.} \\ \operatorname{rank}(W) = k}} \sum_{t=1}^{n} \langle I - W, Y_t \rangle\right] \leq \widetilde{O}\left(\sqrt{n \min\{k, d-k\}^2}\right)$$

Suppose we're in same setting as parameter-free OMD, but want to adapt to multiple norms instead of a single one.

OCO with multiple norms

Fix a collection of N norms $\|\cdot\|_{(k)}$, each having $\frac{1}{2}\|\cdot\|_{(k)}^2 \lambda_k$ -strongly convex. There is an efficient strategy that guarantees

$$\mathbb{E}\left[\sum_{t=1}^{n} g_t(w_t) - \sum_{t=1}^{n} g_t(w)\right] \le (\|w\|_{(k)} + 1)\sqrt{n \cdot \log\left((\|w\|_{(k)} + 1)n\right)/\lambda} \quad \forall w, \ k \in \mathbb{C}$$

whenever each g_t is 1-Lipschitz w.r.t. each dual norm $\|\cdot\|_{(k),\star}$.

References

- [1] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In *ICML*, pages 928–936, 2003.
- [2] Brendan McMahan and Jacob Abernethy. Minimax optimal algorithms for unconstrained linear optimization. In Advances in Neural Information Processing Systems, pages 2724–2732,
- [3] H. Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in hilbert spaces: Minimax algorithms and normal approximations. In Proceedings of The 27th Conference on Learning Theory, pages 1020–1039, 2014.
- [4] Francesco Orabona. Simultaneous model selection and optimization through parameter-free stochastic learning. In Advances in Neural Information Processing Systems, pages 1116–1124, 2014.
- [5] Francesco Orabona and Dávid Pál. From coin betting to parameter-free online learning. *arXiv preprint arXiv:1602.04128*, 2016.