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Overview
Structural risk minimization
for online convex optimization

or
How to do large-scale online/stochastic optimization without

hyperparameters.

OCO and Online Gradient Descent

Online convex optimization protocol:
For t = 1 to n:

Select distribution qt ∈ ∆(W) (where W ⊆ Rd is constraint set).

Nature selects convex function gt :W → R.

Draw wt ∼ qt and incur loss gt(wt).

End
Standard algorithm: online gradient descent. Suppose:

• W =
{
w ∈ Rd | ‖w‖2 ≤ R

}
and each gt is 1-Lipschitz wrt ‖·‖2.

• Predict with Online Gradient Descent [1]:

wt+1 = ProjW(wt − η∇gt(wt)),

with η = R/
√
n.

OGD has regret:

n∑
t=1

gt(wt)− inf
w∈W

n∑
t=1

gt(w) ≤ R
√
n.

How to choose R?

Parameter-free learning

Solution [2, 3, 4, 5]: There are efficient (linear-time) algorithm achieving:

n∑
t=1

gt(wt)−
n∑
t=1

gt(w) ≤ (‖w‖2+1)
√
n · log((‖w‖2 + 1)n) ∀w ∈ Rd.

Same runtime as OGD + rate above is unimprovable.

This paper: Moving beyond `2 (efficiently)!

Results
Generalize to all norms

n∑
t=1

gt(wt)−
n∑
t=1

gt(w) ≤ (‖w‖+ 1)
√
n · log((‖w‖+ 1)n) ∀w.

for any norm ‖·‖ where original (fixed-R) problem is learnable. Even `p
analogue not known!

General structural bounds
n∑
t=1

gt(wt)−
n∑
t=1

gt(w) ≤ Compn(w) ·Pen(Compn(w))

for abstract complexity Compn(w); allows arbitrary discrete or combinato-
rial structure.

Efficient meta-algorithm
– Efficient whenever original (parameter-dependent) problem has efficient

algorithms.
=⇒ can work in non-convex or non-parametric settings.

Approach and key challenges
Theorem: Parameter-free mirror descent

Fix norm ‖·‖ with 1
2‖·‖

2
λ-strongly convex. Then parameter-free mirror

descent efficiently guarantees

E

[
n∑
t=1

gt(wt)−
n∑
t=1

gt(w)
]
≤ (‖w‖+ 1)

√
n · log((‖w‖+ 1)n)/λ ∀w.

whenever each gt is 1-Lipschitz w.r.t. dual norm ‖·‖?.

Idea #1: Learn best learning rate for OMD
• Fix norm ‖·‖ with 1

2‖·‖
2
λ-strongly convex, let ‖·‖? be the dual.

• Let Wk =
{
w ∈ Rd | ‖w‖ ≤ 2k−1}, k ∈ 1, . . . , n+ 1.

• Then Online Mirror Descent over Wk guarantees
n∑
t=1

gt(wkt )− inf
w∈Wk

n∑
t=1

gt(w) ≤ 2k−1
√
n/λ

if (gt)t≤n are 1-Lipschitz wrt ‖·‖?.

Idea #2: Reduce to experts problem
Recall experts setting over N experts:
For time t = 1, . . . , n:

• Learner selects distribution pt ∈ ∆N .

• Nature selects loss gt ∈ RN .

• Learner samples it ∼ pt and experiences loss gt[it].

Regret:
n∑
t=1

gt[it]− min
i∈[N ]

n∑
t=1

gt[i].

Applying to our setting:

• Experts: OMD instances (wkt )k∈[N ] given above.

• Loss: gt = (gt(wkt ))k∈[N ].

• Meta algorithm: Sample it ∼ pt and play witt .

Challenge:

• For our application, can have |gt[i]| >> |gt[j]|, e.g. 2n vs. 2.

• Typical algorithms (eg: multiplicative weights) scale with ‖gt‖∞.

• Can we ensure large coordinates don’t dominate?

Idea #3: Multi-scale experts
Applying MultiscaleFTPL (see next column) to our OMD setting
gives:

E

[
n∑
t=1

gt(wkt
t )− inf

‖w‖≤2k

n∑
t=1

gt(w)
]
≤ 2k

√
n

λ
+C·2k

√
n log(2kn) ∀k ≤ n.

=⇒ within constant factor of desired regret bound!

• For 1 ≤ ‖w‖ ≤ 2n the RHS is within a constant factor.

• Write off ‖w‖ ≤ 1.

• RHS of desired bound is vacuous for ‖w‖ ≥ 2n; no need to use
algorithm.

Multi-scale experts algorithm: MultiscaleFTPL
Algorithm: MultiscaleFTPL

For time t = 1, . . . , n:

• Draw sign vectors σt+1, . . . , σn ∈ {±1}N each uniformly at random.

• Compute distribution

pt(σt+1:n) :=

arg min
p∈∆N

sup
gt:|gt[i]|≤ci

[
〈p,gt〉+ sup

i∈[N ]

[
−

t∑
s=1

gs[i] + 4
n∑

s=t+1

σs[i]ci −B(i)

]]
,

where B(i) = 5ci
√
n log(4c2

in/πi)

• Play it ∼ pt.

Theorem: Multi-scale experts

Suppose the loss sequence (gt)t≤n satisfies |gt[i]| ≤ ci for some (ci)i∈[N ]
with each ci ≥ 1. Let π ∈ ∆N be a given prior distribution on the experts.
Then the randomized strategy MultiscaleFTPL has regret

E

[
n∑
t=1

gt[it]−
n∑
t=1

gt[i].
]
≤ O

(
ci
√
n log(nci/πi)

)
∀i ∈ [N ].

!!! Compare to usual experts regret: ‖c‖∞
√
n log(1/πi). !!!

Recent applications of multi-scale experts:
- Online auctions [Bubeck-Devanur-Huang-Niazadeh‘17]

Uses alg. based on multi-scale entropy regularizer. Doesn’t get optimal dependence
on πi but can give multiplicative regret guarantee.

- k-server [Bubeck-Cohen-Lee-Lee-Madry‘17]
Continuous-time generalization.

Analyzing MultiscaleFTPL
We will show that MultiscaleFTPL guarantees

E max
i∈[N ]

[
n∑
t=1

gt[it]−
n∑
t=1

gt[i]−B(i)

]
≤ O(1).

Let’s analyze worst case contribution of final round n to regret

sup
gn:|gn[i]|≤ci

E
in∼pn

max
i∈[N ]

[
gn[in]−

n∑
t=1

gt[i]−B(i)

]
.

Via (somewhat standard) technique of minimax swap + sequential symmetriza-
tion [Foster-Rakhlin-Sridharan‘15], MultiscaleFTPL strategy leads to upper bound:

sup
gn:|gn[i]|≤ci

E
εn∈{±1}

max
i∈[N ]

[
2εngn[in]−

n−1∑
t=1

gt[i]−B(i)

]

= max
σn{±1}N

E
εn∈{±1}

max
i∈[N ]

[
2εnσn[i]ci −

n−1∑
t=1

gt[i]−B(i)

]
Multi-scale FTPL lemma says we can replace the maxσn with perturbation.

≤ E
σn{±1}N

max
i∈[N ]

[
4σn[i]ci −

n−1∑
t=1

gt[i]−B(i)

]
.

Repeating above process for n rounds (many subtleties — see paper), get upper
bound on Regi −B(i) of

E
σ1:n{±1}N

max
i∈[N ]

[
4

n∑
t=1

σt[i]ci −B(i)

]
≤ O(1).

Final bound is by multi-scale maximal inequality.

Full result derived via adaptive relaxation framework [Foster-Rakhlin-Sridharan‘15].

Key lemmas
Lemma: Multiscale Perturbation (cf. Rakhlin-Shamir-Sridharan‘12))

For any w ∈ RN , any c ∈ RN+ ,

sup
σ∈{±1}N

E
ε∈{±1}

max
i∈[N ]
{wi + 2εσici} ≤ E

σ∈{±1}N
max
i∈[N ]
{wi + 4σici}.

Lemma: Multiscale Martingale Maximal Inequality

Let (Zt)t≤n be any martingale difference sequence in RN with Zt[i] ≤ ci
almost surely and π ∈ ∆N be fixed. Then

E
Z

sup
i∈[N ]

[
2

n∑
t=1

Zt[i]− 5ci
√
n log(4c2

in/πi)
]
≤ O(1).

Supremum of scaled, offset random process.

• For each i, |
∑n
t=1 Zt[i]| is roughly ci

√
n whp.

• If we considered just E supi∈[N ]
∑n
t=1 Zt[i], larger ci terms would

dominate.

• Offset 5ci
√
n log(4c2

in/πi) penalizes big cis.

More applications
Online PCA task: Predict PSD matrix Wt ∈ Rd×d, receive PSD matrix Yt with
λmax(Yt) ≤ 1, experience loss 〈I −Wt, Yt〉.

Online PCA

There is a randomized algorithm for Online PCA that for all ranks k ≤ d
simultaneously achieves

E

 n∑
t=1

〈I −Wt, Yt〉 − min
W proj.

rank(W )=k

n∑
t=1

〈I −W,Yt〉

 ≤ Õ(√nmin{k, d− k}2
)
.

Suppose we’re in same setting as parameter-free OMD, but want to adapt to
multiple norms instead of a single one.

OCO with multiple norms

Fix a collection of N norms ‖·‖(k), each having 1
2‖·‖

2
(k) λk-strongly convex.

There is an efficient strategy that guarantees

E

[
n∑
t=1

gt(wt)−
n∑
t=1

gt(w)

]
≤ (‖w‖(k)+1)

√
n · log

(
(‖w‖(k) + 1)n

)
/λ ∀w, k.

whenever each gt is 1-Lipschitz w.r.t. each dual norm ‖·‖(k),?.
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