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Abstract

Recent empirical success in machine learning has led to major breakthroughs in application
domains including computer vision, robotics, and natural language processing. There is a
chasm between theory and practice here. Many of the most impressive practical advances in
learning rely heavily on parameter tuning and domain-specific heuristics, and the development
effort required to deploy these methods in new domains places a great burden on practitioners.
On the other hand, mathematical theory of learning has excelled at producing broadly
applicable algorithmic principles (stochastic gradient methods, boosting, SVMs), but tends
to lag behind in state-of-the-art performance, and may miss out on practitioners’ intuition.
Can we distill our collective knowledge of “what works” into learning procedures that are
general-purpose, yet readily adapt to problem structure in new domains?

We propose to bridge the gap and get the best of both worlds through adaptive learning:
Learning procedures that go beyond the worst case and automatically exploit favorable
properties of real-world instances to get improved performance.

The aim of this thesis is to develop adaptive algorithms and investigate their limits, and to do
so in the face of real-world considerations such as computation, interactivity, and robustness.
In more detail, we:

1. introduce formalism to evaluate and assert optimality of adaptive learning procedures.

2. develop tools to prove fundamental limits on adaptivity.

3. provide efficient and adaptive algorithms to achieve these limits.

In classical statistical decision theory, learning procedures are evaluated by their worst-case
performance (e.g., prediction accuracy) across all problem instances. Adaptive learning
evaluates performance not just worst case, but in the best case and in between.

This necessitates the development of new statistical and information-theoretic ideas to provide
instance-dependent performance guarantees, as well as new algorithmic and computational
principles to derive efficient and adaptive algorithms.

The first major contribution this thesis makes concerns sequential prediction, or online
learning. We prove the equivalence of adaptive algorithms, probabilistic objects called
martingale inequalities, and geometric objects called Burkholder functions. We leverage the
equivalence to provide:

1. a theory of learnability for adaptive online learning.

2. a unified algorithm design principle for adaptive online learning.



The equivalence extends the classical Vapnik-Chervonenkis theory of (worst-case) statistical
learning to adaptive online learning. It allows us to derive new learning procedures that
efficiently adapt to problem structure, and serves as our starting point for investigating
adaptivity in real-world settings.

In many modern applications, we are faced with data that may be streaming, non-i.i.d.,
or simply too large to fit in memory. In others, we may interact with and influence the
data generating process through sequential decisions. Developing adaptive algorithms for
these challenges leads to fascinating new questions. Must we sacrifice adaptivity to process
and make predictions from data as it arrives in a stream? Can we adapt while balancing
exploration and exploitation?

Major contributions this thesis makes toward these questions include:

• We introduce a notion of “sufficient statistics” for online learning and show that this
definition leads to adaptive algorithms with low memory requirements.

• We develop large scale optimization algorithms for learning that adapt to problem
structure via automatic parameter tuning, and characterize their limits.

• We give adaptive algorithms for interactive learning/sequential decision making in
contextual bandits, a simple reinforcement learning setting. Our main result here is a
new margin theory paralleling that of classical statistical learning.

• We provide robust sequential prediction algorithms that obtain optimal instance depen-
dent performance guarantees for statistical learning, yet make no assumptions on the
data generating process. We then characterize their limits.

• We design algorithms that adapt to model misspecification in the ubiquitous statistical
task of logistic regression. Here we give a new improper learning algorithm that attains
a doubly-exponential improvement over sample complexity lower bounds for proper
learning. This resolves a COLT open problem of McMahan and Streeter (2012), as well
as two open problems related to adaptivity in bandit multiclass classification (Abernethy
and Rakhlin, 2009) and online boosting (Beygelzimer et al., 2015).
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Chapter 1

Introduction

Essentially, all models are wrong, but some are useful.

George E.P. Box (1987)

In the last decade, machine learning has been a driving force behind core advances in computer
vision (LeCun et al., 2015), robotics (Lillicrap et al., 2015), natural language processing
and machine translation (Bahdanau et al., 2014), control and planning (Mnih et al., 2015;
Silver et al., 2016), computational biology, recommender systems, information retrieval, and
beyond. There are many important statistical and algorithmic lessons to be taken from these
advances, yet the most impressive achievements—recognizing cats and dogs in photographs or
controlling Atari agents—depend on countless hours of parameter tweaking and substantial
domain-specific insights. Can we distill our hard-won understanding of what works in the real
world into principled machine learning solutions that can be readily deployed in new domains
as needed? Can we do so without sacrificing the statistical accuracy and computational
efficiency that has made these advances so significant in the first place?

Machine learning, both as a research discipline and as an applied field, can broadly be
understood as trying to solve three problems: modeling (What models work well, and where?),
evaluation (What do we actually mean when we say a model works well?), and algorithm design
(How can we better train models?). Domingos (2012) describes this succinctly as learning =
representation + evaluation + optimization. Historically, important progress on these problems
has come both from theoretical research (“theory”) and empirical research (“practice”).
Theory attempts to make progress through improved mathematical understanding, and has
contributed general algorithmic principles that have enjoyed widespread adoption, such as
boosting (Freund and Schapire, 1996, 1997; Schapire et al., 1997), convex relaxations for
high-dimensional statistics (Donoho, 1995; Candès et al., 2006; Candès and Recht, 2009),
and stochastic gradient methods for large-scale learning (Bottou and Bousquet, 2008; Shalev-
Shwartz et al., 2011). Practice takes an engineering approach and builds real-world learning
systems in pursuit of better performance on concrete tasks, and has led both to general
principles (e.g., feedfoward neural networks) and domain-specific insights (e.g., feedforward
neural networks with convolutional layers for vision) (LeCun et al., 1998).
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1.1 Adaptive Learning

The aim of this thesis is to develop systematic tools to promote interplay between theory
and practice. We introduce general-purpose learning procedures that can be easily deployed
across different domains, yet quickly adapt to problem-specific structure to obtain strong
performance, and do so provably. We term this type of guarantee adaptive learning. In this
thesis we:

• provide a formalism to describe and evaluate adaptive learning procedures.

• establish fundamental limits of adaptive learning.

• develop efficient and adaptive algorithms to match these limits.

What problem structure one should adapt to—equivalently, what type of data is “easy” or
“nice”—may vary considerably across application domains. A statistician’s idea of niceness
could be data sparsity, where examples have only a few relevant features in spite of being very
high-dimensional, while a researcher applying machine learning to computer vision might
imagine that nice examples are those with spatial regularity. To proceed, it will be helpful
to expand on the first bullet and give a formal definition of what it means for a learning
procedure to be adaptive.

This thesis formalizes adaptive learning through the language of statistical decision theory
(Van der Vaart, 2000; Lehmann and Casella, 2006). Imagine that a user would like to predict
or estimate something about the true state of the world. We call this state Unknown. The
user (or, “learner”) does not have direct access to Unknown, but can gather an observable
quantity denoted as Observable, which is generated from Unknown. We write this process as
“Observable ∼ Unknown”. The user feeds Observable into a learning procedure Alg that uses it
to make a decision, and the quality of this decision is measured via the risk

E
Obs.∼Unknown

[Error(Alg(Observable),Unknown)],

where Error(Alg(Observable),Unknown) is the price Alg pays for making its decision from
Observable when the true state is Unknown.

For image classification, we might imagine that Unknown is an unknown mapping from feature
vectors (images) to labels (“cat” or “dog”), Observable is a collection of labeled examples, and
Error measures accuracy of a classifier trained on these examples using Alg. While simple, this
formulation is quite general and includes many tasks beyond classical supervised classification
and regression, including unsupervised learning (e.g., mean estimation or dimensionality
reduction), hypothesis testing, and even tasks like stochastic optimization and sequential
decision making that do not necessarily fall into the i.i.d. paradigm.

There is substantial research across computer science, statistics, information theory, and
optimization that develops so-called worst-case guarantees on the risk of statistical decision
procedures. These results—one may think of probably approximately correct (PAC) learning
(Valiant, 1984), Vapnik-Chervonenkis (VC) theory (Vapnik and Chervonenkis, 1971), or
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statistical minimax theory (Wald, 1939)—typically provide upper bounds of the form

E
Obs.∼Unknown

[Error(Alg(Observable),Unknown)] ≤ C ∀ unknowns, (1.1)

where “∀ unknowns” denotes that we would like the guarantee to hold regardless of what the
true state of the world is. We call the constant C a worst-case or uniform bound on the risk
because it upper bounds the learning procedure’s performance uniformly across all possible
unknown states or “instances”.

To develop and analyze learning procedures that adapt to problem structure, it will be helpful
to have a more refined notion of statistical performance. We would like to evaluate the
performance of decision rules not just on their worst-case performance, but on their best-case
performance on instances that are particularly nice and, more broadly, on instances across
the whole spectrum of niceness.

Our starting point is to assume that the metric through which niceness is quantified is
fixed, and then evaluate statistical decision rules based on the extent to which they adapt
in accordance with the metric. That is, we take as given a function φ(Observable,Unknown)
that specifies jointly the niceness of nature (Unknown) and niceness of the observations
(Observable). We call such a function φ an adaptive risk bound, and a learning procedure Alg
will be said to achieve φ if

E[Error(Alg(Observable),Unknown)] ≤ E[φ(Observable,Unknown)] ∀ unknowns. (1.2)

We abbreviate EObservable∼Unknown to E above and for the remainder of the chapter.

The utility of this formulation is to abstract away the problem of deciding which instances
are nice, which we emphasize is inherently subjective (indeed, the “no-free lunch” theorems
(Wolpert, 1996) imply that some instances must be difficult for a given learner). As a rule of
thumb we will have the following desiderata:

1. φ(Observable,Unknown) should be small whenever Observable and Unknown are nice.

2. φ(Observable,Unknown) should be not much larger than the best uniform bound C in
the worst case.

Examples of Adaptivity So as not to risk becoming too abstract, let us take a moment
to sketch how this framework captures some interesting types of problem structure. For
concreteness we focus on supervised learning; either classification or regression. Typically
the first step in supervised learning is to pick a model, that is, a set of candidate regression
functions or classifiers that map features to targets. We do so with the tacit assumption that
the model will be a good fit for nature. In basic data analysis tasks one might use a linear
model, and in computer vision or machine translation one might use a deep neural network.
Once the model is picked, we gather data and feed it into a learning procedure that uses it to
find a regression function or classifier that (hopefully) predicts well on future examples.

In this setting adaptivity captures the interaction between the model and nature in a number
of familiar ways.
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• Adaptivity to label or target distribution. Suppose our goal is to learn a binary classifier
to distinguish images of cats and dogs, and suppose we have done a very good job of
picking our model: One of the classifiers under consideration perfectly separates the
examples in our dataset into cats and dogs! Can we exploit this good fortune to achieve
strong predictive performance on future examples? In other words, we would like to
achieve the adaptive rate

φ(Observable,Unknown) = “small if data is separable.”

Dating back to the Perceptron (Rosenblatt, 1958), such margin bounds have been a
core object of study throughout the development of statistical learning theory (Vapnik,
1998; Panchenko, 2002). Algorithms that exploit the margin to predict confidently
(“maximizing the margin”) such as boosting (Schapire et al., 1997) have enjoyed
significant practical success, and more recently the margin has also been recognized to
play a role in generalization in deep learning (Zhang et al., 2017; Bartlett et al., 2017).

More generally, we may hope for an adaptive rate that smoothly interpolates between
the separable and non-separable regimes, even in the presence of possible model mis-
specification, e.g. φ(Observable,Unknown) = “small if target variance is small”. Beyond
statistical learning, the importance of exploiting low noise or variance in targets has
been studied intensely in closely related areas including sequential decision making (e.g.,
bandits) (Auer et al., 2002a; Audibert and Bubeck, 2010; Goldenshluger and Zeevi,
2013; Bastani and Bayati, 2015), stochastic optimization (Nemirovski et al., 2009; Lan,
2012), and econometric applications such as learning treatment policies (Chernozhukov
et al., 2016; Athey and Wager, 2017).

• Adaptivity to model class structure: A basic rule of thumb in learning is that the amount
of data one must gather to train a model should scale with the model complexity
(Friedman et al., 2001). If our goal is to train a very large model class, we may hope
that if data is nice we do not pay for the complexity of the full model but instead pay
the complexity of a smaller subclass. In particular, if our model decomposes into a
sequence of nested models model(1) ⊂ model(2) ⊂ ..., an adaptive learning guarantee
may take the form

φ(Observable,Unknown) = “small if model(i) fits nature well, where i is not too large.”

Such adaptivity is the aim of classical statistical task of model selection (Mallows, 1973;
Akaike, 1974; Massart, 2007). Model selection is a major feature of high-dimensional
statistical procedures such as the Lasso (Donoho, 1995; Candès et al., 2006; Candes and
Tao, 2007) that perform data-driven selection of features. The basic challenge of model
selection—especially at large scale—is pervasive in modern machine learning, with
problems such as choosing the best neural network architecture receiving intense interest
(Snoek et al., 2012; Zoph and Le, 2016). The task of learning the best parameters for
online or stochastic optimization procedures is closely related (McMahan and Abernethy,
2013).

• Adaptivity to feature distribution. A final, ubiquitous type of adaptivity is to achieve
improved statistical performance when features themselves have extra structure. There
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are many natural types of structure that features can present, for example

φ(Observable,Unknown) =

“small if features are sparse,”
“small if features are low-dimensional,”
“small if features lie on a smooth manifold,”
...

Many algorithms for supervised learning and statistical inference exploit that niceness
in the feature distribution reduces the “effective complexity” of the model class (Bartlett
and Mendelson, 2003; Chandrasekaran et al., 2012; Negahban et al., 2012). This type
of adaptivity is also closely related to unsupervised learning, especially dimensionality
reduction (Roweis and Saul, 2000; Tenenbaum et al., 2000; Belkin and Niyogi, 2003;
Candès et al., 2011). In online and stochastic optimization, adaptive methods that
exploit feature sparsity and related structure (Duchi et al., 2011; Kingma and Ba, 2015)
have had significant practical impact on large-scale learning.

An important takeaway from these examples is that adaptivity is not simply an issue
of tightening analysis. Adaptive learning guarantees typically require explicitly adaptive
algorithms and, conversely, algorithms designed with the worst case in mind are often
conservative in nature.

1.2 The Adaptive Minimax Principle

The examples in the previous section are themselves but a few points living in a vast space
of adaptive learning procedures. This thesis develops theoretical tools to explore this space,
and to shed light on the common structure shared by these procedures. There are several
interesting and practical questions regarding the tradeoffs of adaptive learning that we would
like to elucidate. Can we guarantee good performance on a given class of nice instances
without sacrificing performance on other instances, or does adapting to niceness come with a
price? Are some notions of niceness intrinsically at odds with each other? Can all instances be
equally nice? Can certain adaptive learning procedures dominate other adaptive procedures?

As a starting point toward answering these questions, this thesis intoduces minimax analysis
of adaptive learning. The reader may recall that in classical statistical decision theory, Wald’s
minimax principle (1939) is a criterion for evaluating and comparing the performance of
statistical decision procedures. The principle states that statistical decision rules should be
evaluated relative to the minimax risk, that is, relative to the performance of the decision
rule Alg that minimizes

max
unknowns

E[Error(Alg(Observable),Unknown)], (1.3)

or in other words, relative to the value

V := min
algorithms

max
unknowns

E[Error(Alg(Observable),Unknown)]. (1.4)
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Adaptive minimax analysis generalizes this idea to adaptive learning. The adaptive analogue
of the minimax risk (1.4) is what we call the minimax achievability for φ, defined via

V(φ) = min
algorithms

max
unknowns

E[Error(Alg(Observable),Unknown)− φ(Observable,Unknown)].
(1.5)

Minimax achievability has the following immediate interpretation: We are always guaranteed
that there exists an algorithm Alg such that

E[Error(Alg(Observable),Unknown)] ≤ E[φ(Observable,Unknown)] + V(φ) ∀ unknowns,

so that if V(φ) ≤ 0 we can conclude the rate φ is indeed achievable. Conversely, for any
c < V(φ) no algorithm can guarantee

E[Error(Alg(Observable),Unknown)] ≤ E[φ(Observable,Unknown)] + c (1.6)

for all instances, or in other words the rate φ(Observable,Unknown) + c is never achievable.

The adaptive minimax principle we employ throughout this thesis is to evaluate adaptive
learning procedures according to the smallest c for which they guarantee the inequality
(1.6) holds for all instances. While simple, the adaptive minimax principle has a powerful
consequence: It allows us to assert optimality of adaptive learning procedures. In particular,
we say that any procedure Alg that guarantees (1.6) with c = V(φ) is optimal for φ.

We briefly remark that there are many other criteria for evaluating statistical decision
procedures, notably Bayesian frameworks (Berger, 2013) and their frequentist relatives
(Shawe-Taylor et al., 1998; McAllester, 1999). A key difference is that while both Bayesian
frameworks and the adaptive framework (through φ) incorporate prior knowledge, the
adaptive framework is agnostic and does not assume any particular model for the world.

1.2.1 Contribution: Equivalence

This thesis uses the adaptive minimax principle as a starting point to develop an (algorithmic)
theory of learnability for adaptive learning in the online prediction (or, online learning)
model. The new theory is analogous to the classical PAC or VC theory for statistical learning
(Valiant, 1984; Vapnik and Chervonenkis, 1971), but characterizes achievability and rates for
adaptive learning, and does so in the online setting. It is based on the following equivalence:

Adaptive risk bounds are equivalent to mathematical objects called martingale inequalities,
which are in turn equivalent to geometric objects called Burkholder functions.

Let us give a bird’s-eye view of the result:

Figure 1.1:

Online Prediction Martingale Inequalities Geometric Propertiesminimax duality Burkholder method

10



Beginning with the notion of minimax achievability, we first show that for any adaptive rate
φ, achievability is equivalent to a corresponding probabilistic martingale inequality. This is
achieved with the help of the minimax theorem. We then turn to the Burkholder method—a
tool developed in a series of celebrated works by Donald Burkholder to certify martingale
inequalities (Burkholder, 1981, 1984, 1986, 1991)—and show equivalence of these martingale
inequalities and existence of a special Burkholder (or, “Bellman”) function, a purely geometric
object. Finally, we use this function for adaptive online prediction, thus completing the circle.
The main consequences of this development are:

1. Martingale inequalities characterize the fundamental limits of adaptive learning in an
algorithm-independent manner. Consequently, the probabilist’s toolbox of tail bounds,
maximal inequalities, and so forth may be used to certify the existence or non-existence
of algorithms without concern for algorithm design.

2. Once an adaptive learning guarantee is known to be achievable, the geometric certificates
(Burkholder functions) provided by the Burkholder method can be exploited to design
efficient algorithms.

1.3 Adaptive Learning for Real-World Challenges

The improved understanding of adaptivity and adaptive algorithms provided by the equiv-
alence has strong consequences for real-world machine learning and statistics applications.
In such applications, learning algorithms must be evaluated under practical considerations;
classical (e.g., PAC) statistical risk is not a holistic measure of performance. For example,
learning procedures with strong statistical performance may be useless in practice if they
are difficult to compute or do not fit in memory. Learning procedures may not be deployed
in purely observational settings, but instead may be used to make decisions that influence
future observations and outcomes (e.g., robotic control).

To leverage the equivalence to design algorithms that are adaptive and practical, we make
the observation that many of practical constraints can be encoded in the adaptive minimax
framework (1.5)—a consequence of its high generality. We outline several examples below.

• Computation and memory. Real-world machine learning is concerned not just with sta-
tistical performance, but statistical performance subject to the constraint that learning
procedures run in a reasonable amount of time, and do so while using a reasonable
amount of memory. Issues of computation in learning date back to Valiant’s work on
PAC learning (Valiant, 1984), which is concerned with polynomial time learnability. In
recent decades, a more refined understanding of the interplay between computation
and learning has developed, including a limited understanding of fundamental tradeoffs
between computation time and statistical efficiency (Decatur et al., 2000; Servedio,
2000; Bottou and Bousquet, 2008; Shalev-Shwartz et al., 2011, 2012; Chandrasekaran
and Jordan, 2013; Berthet et al., 2013; Zhang et al., 2014).

One line of research in this thesis develops computationally efficient adaptive algorithms
through the online learning model. Learning procedures for online learning framework
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such as stochastic gradient methods offer—both in theory and practice—an effective
knob with which to control tradeoffs between computation time and statistical accuracy
(Bottou and Bousquet, 2008; Shalev-Shwartz et al., 2011). Moreover, many algorithms
developed for online learning enjoy low memory requirements, even though this is not
formally part of the model. This thesis includes some new contributions toward making
this connection more formal.

This thesis also explores interplay between adaptivity and computation through opti-
mization complexity. Modern machine learning is ripe with (stochastic) optimization
problems in which we search for the model that minimizes the (empirical or popula-
tion) risk or related objectives. A basic unit of computation for such problems is the
oracle complexity or information-based complexity (Nemirovski et al., 1983): Given an
oracle that accepts a point and returns the function value, gradient, or other features,
how many oracle queries are required to approximately minimize the function to a
desired precision. We develop adaptive algorithms in the online convex optimization
model, which immediately implies (adaptive) upper bounds on the oracle complexity of
stochastic optimization problems arising in learning.

• Interactivity. Systems in which agents learn to make decisions by sequentially interacting
with an unknown environment are becoming increasingly ubiquitous. These range in
complexity from content recommendation systems (Li et al., 2010; Agarwal et al., 2016)
(agents present decisions such as news articles to users, learn from these decisions, and
improve decisions for future users) to reinforcement learning agents for sophisticated
human-level control tasks (Mnih et al., 2015; Silver et al., 2016). Closely related
are tasks in causal inference and policy learning (Swaminathan and Joachims, 2015;
Chernozhukov et al., 2016, 2018; Athey and Wager, 2017). Interactivity, across the
complexity spectrum, induces a tradeoff between exploration and exploitation that
must be balanced to ensure sample efficient learning.

In this thesis we address adaptivity in interactive learning through the contextual
bandit model. Contextual bandits generalize the online supervised learning setting to
accommodate uncertainty (specifically, partial or incomplete feedback), and have seen
successful application in news article recommendation and mobile health (Li et al.,
2010; Agarwal et al., 2016; Tewari and Murphy, 2017; Greenewald et al., 2017). From a
technical perspective, the contextual bandit model is a good testbed for developing new
algorithmic tools for adaptive learning because it is the simplest reinforcement learning
setting that embeds the full complexity of statistical learning.

• Robustness. Box (1987) writes: “Essentially, all models are wrong, but some are useful.”
While modeling is intrinsic to learning, it is important to develop learning procedures
that give strong guarantees and degrade gracefully when modeling assumptions fail.
Indeed, it is widely recognized that improving robustness is essential step toward
building learning systems that can be safely deployed in the real world (Kurakin et al.,
2017; Biggio and Roli, 2018). In statistical learning, these issues have been explored
through the agnostic PAC model (Haussler, 1992; Kearns et al., 1994) and the so-called
general setting of learning (Vapnik, 1995). Robustness has been addressed in parallel
throughout the history of statistics, leading to a complementary set of models and
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principles for robust inference (Box, 1953; Tukey, 1975; Huber, 1981; Hampel et al.,
1986).

This thesis explores the interaction between robustness and adaptivity both in agnostic
statistical learning, and in the other learning models mentioned thus far (online learning,
online convex optimization, contextual bandits), all of which are agnostic in nature and
do not assume model correctness.

1.3.1 Contribution: New Adaptive Learning Guarantees

The practical considerations above lead to a number of fascinating challenges when combined
with questions of adaptivity. Computationally, can we develop efficient algorithms that adapt
to data whenever this is statistically possible? Is it more difficult to adapt when have to
make predictions on the fly for data arriving in a stream? How does adaptivity interact with
tradeoffs between exploration and exploitation? This is where the tools provided by the
equivalence come to help.

We work in four settings—online learning, online optimization, agnostic statistical learning,
and contextual bandits—and for each setting identify an important family of adaptive
guarantees for which existing theory and algorithms are unsatisfactory. For each such family
we comprehensively characterize the fundamental limits on the degree to which this new type
of adaptivity can be achieved, and then design efficient algorithms to achieve this limit. The
central contributions are:

• We give tools that permit the systematic development of low-memory adaptive al-
gorithms. We show that whenever a given adaptive rate can be expressed in terms
of certain “sufficient statistics” of the data sequence, there exists an online learning
algorithm that is only required to keep these sufficient statistics in memory.

• We introduce optimal and efficient algorithms that adapt to problem structure in online
convex optimization via online parameter tuning, and characterize limits for this type
of adaptivity via connections to the theory of model selection in statistical learning.

• We develop robust statistical learning algorithms that adapt to the degree of model
misspecification. Specifically, for logistic regression we design a new improper learning
algorithm (via online learning techniques) that attains a doubly-exponential improve-
ment over sample complexity lower bounds for proper learning in the misspecified
setting, thereby resolving a COLT open problem of McMahan and Streeter (2012). We
then use this algorithm to resolve open problems regarding adaptive algorithms for
bandit multiclass classification (Abernethy and Rakhlin, 2009) and online boosting
(Beygelzimer et al., 2015), and characterize the extent to which this improvement
extends to general hypothesis classes.

• We give a general theory for adapting to problem structure via margin (“margin
theory”) in the contextual bandit setting, and develop efficient algorithms to match the
guarantees from this framework. Our margin theory for contextual bandits applies at
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the same level of generality as the classical margin theory in statistical learning, but
applies to much more challenging sequential decision making tasks.

• We introduce new sequence optimal algorithms for online supervised learning that adapt
to the structure of the feature distribution. These algorithms are always guaranteed to
match the best possible performance in the i.i.d. statistical learning setting, yet do so
without making any assumptions on the data generating process. We characterize the
limits of this type of adaptivity through a new connection between online learning and
probability in Banach spaces.

Themes In the classical statistical learning model, work beginning with Vapnik and
Chervonenkis (1971), has led to a diverse and extensive collection of adaptive performance
guarantees. These guarantees are obtained by simple algorithms, and by and large may be
understood as consequences of basic phenomena in empirical process theory (Pollard, 1990).
A central theme the reader should keep in mind throughout the thesis is:

When can adaptive guarantees from the classical (i.i.d.) statistical learning setting also be
achieved for more challenging (e.g., sequential or interactive) learning settings?

Beyond exploring achievability of different notions of adaptivity in the information-theoretic
sense, it is also of central importance to understand how the algorithmic principles change
when we move beyond the classical setting. Both issues are addressed throughout this thesis.

A second theme is that all of the algorithms we develop make few or no assumptions on the
process by which data is generated. Even though we might imagine that the real world is
ripe with niceness and problem structure, we lose little by working in such agnostic learning
models precisely because the adaptive algorithms we develop can exploit problem structure
whenever instances do happen to be nice.

1.4 Organization

In the remainder of this chapter (Section 1.5), we give a preview of the general approach
to analyzing adaptive learning through the equivalence framework. Then, in Chapter 2
we develop the minimax analysis of adaptive learning formally, showing how to formulate
statistical learning, online learning, contextual bandits, and online and stochastic optimization
in the adaptive minimax framework. From here on, the main content of the thesis is broken
into two parts.

Part II: Equivalence of Prediction, Martingales, and Geometry In Part II, we
introduce the technical tools that form the core of the thesis. We work in the online
learning model, and the main development is the equivalence of adaptive learning, martingale
inequalities, and Burkholder functions illustrated in Figure 1.1.
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In Chapter 4 we present the equivalence in its simplest form, focusing on the online supervised
learning setting with linear losses. As a running example, we illustrate the method by
developing a new adaptive algorithm for online matrix prediction. In Chapter 5 we present
the equivalence in its general form. We also show—via the Burkholder method—how a certain
notion of sufficient statistics for online learning leads to low-memory adaptive algorithms. In
Chapter 6 we develop generic tools for proving martingale inequalities that arise from the
equivalence. We show how adaptive rates in the supervised learning model induce certain
“offset” random processes, and that obtaining small upper bounds on these processes is
sufficient to demonstrate achievability. We use this approach to recover a number of existing
adaptive guarantees, as well as to derive new guarantees.

Part III: New Guarantees for Adaptive Learning In Part III, with the toolbox from
Part II in hand, we proceed to develop new types of adaptive learning guarantees for four
settings: statistical learning, online learning, contextual bandits, and online and stochastic
optimization. For each setting we identify a new notion of adaptivity, characterize the
fundamental limits on the degree to which this adaptivity is achieved, and design efficient
algorithms to achieve this limit. Chapter 8 develops sequence-optimal online learning
algorithms that adapt to the feature distribution, Chapter 9 introduces algorithms for
model selection and parameter tuning in online convex optimization, Chapter 10 gives new
algorithms that adapt to model misspecification in logistic regression and related problems,
and Chapter 11 develops margin theory for contextual bandits.

1.5 Highlight: Achievability and Algorithm Design

We close the introduction by offering a taste of the tools developed in Part II. We focus on a
setting that is extremely simple, yet completely free of assumptions—online bit prediction—
and show how a result of Cover (1967) completely answers two key questions:

1. What properties of an adaptive rate function φ suffice to guarantee that the rate is
achievable?

2. When such a rate φ is achievable, what algorithm achieves it?

The bit prediction setting is a special case of the online learning setting that features
prominently in this thesis. The learning process proceeds in n rounds: At each step t, the
learner randomly selects a prediction distribution qt, receives an outcome yt ∈ {±1}, then
samples its prediction ŷt ∼ qt and suffers the indicator loss 1{ŷt 6= yt}. In this setting,
adaptive rates φ(y1:n) map the bit sequence y1:n = y1, . . . , yn to a risk bound. A rate φ is
achieved by the learner if

E
[

1
n

n∑
t=1

1{ŷt 6= yt}
]
≤ φ(y1:n) for every sequence y1:n,

where the expectation is taken with respect to the learner’s randomness. To formulate the
minimax value for this setting, we think of a sequential game between the learner and nature.
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We imagine that in the worst case, nature is an adversary whose goal is to make the learner’s
regret to φ as large as possible, so that the goal of a minimax optimal learner is to minimize
regret against this adversary. At each round the contribution to regret is a min-max problem
conditioned on the history so far: The learner chooses qt to minimize regret given the history,
then nature picks a maximally bad value for yt given the learner’s decision, and finally the
prediction ŷt is sampled from qt. The process is repeated for all n rounds, giving rise to the
following expression for the minimax value:

V(φ) = min
q1

max
y1

E
ŷ1∼q1

. . . min
qn

max
yn

E
ŷ1∼q1

[
1
n

n∑
t=1

1{ŷt 6= yt} − φ(y1:n)
]
.

So, for what functions φ does there exist a strategy for the learner such that this inequality
holds (i.e. V(φ) ≤ 0)? Since the adaptive risk inequality is required to hold for every
sequence y1:n, we are free to try some examples to deduce the important properties of φ. As
a particular choice, let ε1, . . . , εn be a sequence of independent Rademacher random variables,
i.e. fair coin flips in {±1}, and choose yt = εt. Since the learner’s strategy at time t only
depends on ε1, . . . , εt−1, it is easy to see that E[1{ŷt 6= yt}] = 1

2 for any learner. Since this
holds at each round, we conclude that a necessary condition for achievability is that

E
ε
[φ(ε1:n)] ≥ 1

2 . (1.7)

This condition is necessary, but is it sufficient? Suppose that φ is additionally stable, in the
sense that

|φ(ε1, . . . , εt, . . . , εn)− φ(ε1, . . . , ε′t, . . . , εn)| ≤ 1
n

for all sequences ε1:n, all choices for ε′t, and all times t. Cover’s result is that in this case, the
answer is yes.
Lemma 1 (Cover (1967)). Let φ be any stable adaptive rate function. Then φ is achievable
if and only if Eε[φ(ε1:n)] ≥ 1

2 . Furthermore, any rate φ satisfying this condition is achieved
by the algorithm that chooses qt to be the unique distribution over {±1} with mean

µt = n · E
εt+1:n

[φ(y1, . . . , yt−1,+1, εt+1, . . . , εn)− φ(y1, . . . , yt−1,−1, εt+1, . . . , εn)]. (1.8)

Cover’s result is proved through a potential function argument, which is a recurring theme in
this thesis. The characterization has two favorable properties:

1. The condition for achievability is algorithm-independent. Checking for existence of a
prediction strategy that achieves φ is as simple as checking the probabilistic inequality
Eε[φ(ε1:n)] ≥ 1

2 .

2. It admits an explicit algorithm. That is, once a rate φ is known to be achievable, we
can efficiently compute the strategy that obtains φ and use it to make predictions.1

1It is straightforward to show via concentration that the expectation in the strategy’s definition can be
approximated arbitrarily well with polynomially many samples. This strategy achieves φ up to an arbitrarily
small additive constant.
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Cover’s characterization is quite elegant and will serve as an inspiration for our results going
forward, but it has a number of insufficiencies that must be addressed if we wish to apply
the framework to solve real-world learning challenges. To note a few:

• The learning problem to which the characterization applies does not have covariates
or contexts. This prevents it from being applied to basic classification and regression
tasks.

• The learner’s decision space {±1} is quite simple; to develop adaptive algorithms for,
e.g. optimization, we should accomodate rich output spaces, such as subsets of Rd or
even infinite-dimensional Banach spaces.

• The characterization only applies to the classification loss. To accommodate standard
problems in learning and statistics, we would like to handle other losses, such as the
square loss, logistic loss, and so forth. Characterizing the correct statistical complexity
and developing optimal algorithms for general losses is far from trivial, even in the case
of uniform (non-adaptive) rates.

• In the supervised learning problems, adaptive rates typically incorporate regret against
a benchmark class of models F . For example, we might have

φ(x1:n, y1:n) = inf
f∈F

1
n

n∑
t=1

`(f(xt), yt) + B(x1:n, y1:n),

where B is another function that we refer to as an adaptive bound on the regret to F .
What properties of F influence achievability? Are the requirements on φ more stringent
when F is a class of neural networks than when it is a class of linear functions? In
the case of uniform rates (B is constant), this question is addressed in a line of work
beginning with Rakhlin et al. (2010); we extend this to handle adaptivity.

• The result is specialized to “full information”, wherein the learner completely observes
the feedback chosen by nature. Can we obtain similar characterizations for the com-
plexity of adaptive learning when the feedback is only partially observed? This is the
essential difficulty of contextual bandits.

These questions are far from trivial, and the main results in this thesis may be understood as
answering them with varying levels of completeness.

Proof of Lemma 1. We must prove that Eε[φ(ε1:n)] ≥ 1
2 and stability are sufficient for

achievability, and that the strategy qt achieves φ under these conditions.

Let Ut(y1, . . . , yt) = n−t
2n − Eεt+1:n φ(y1, . . . , yt, εt+1, . . . , εn). Then clearly it holds that

1
n

n∑
t=1

1{ŷt 6= yt} − φ(y1, . . . , yn) ≤ 1
n

n∑
t=1

1{ŷt 6= yt}+ Un(y1, . . . , yn).

To prove the result, it suffices to show inductively that for each 1 ≤ t ≤ n, playing the
prescribed strategy ensures

E
ŷt∼qt

[ 1
n
1{ŷt 6= yt}+ Ut(y1, . . . , yt)

]
≤ Ut−1(y1, . . . , yt−1),
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for any outcome yt. This implies that the strategy guarantees

E
[

1
n

n∑
t=1

1{ŷt 6= yt} − φ(y1, . . . , yn)
]
≤ U0(·),

and we have U0(·) = 1
2 − Eεφ(ε1, . . . , εn) ≤ 0 under the assumption that Eε[φ(ε1:n)] ≥ 1

2 .

We proceed with the inductive proof. Since qt is a distribution over {±1}, it can
be parameterized by its mean µt ∈ [−1,+1]. With this parameterization, we have
Eŷt∼qt

[
1
n
1{ŷt 6= yt}

]
= (1−µtyt)

2n . Consequently, the minimax value at time t can be writ-
ten

min
µt

max
yt∈{±1}

[
(1− µtyt)

2n + Ut(y1, . . . , yt)
]

We choose µt so that the value inside the brackets is constant regardless of the outcome yt,
i.e. to guarantee

(1− µt)
2n + Ut(y1, . . . , yt−1,+1) = (1 + µt)

2n + Ut(y1, . . . , yt−1,−1),

which results in the strategy µt = n · (Ut(y1, . . . , yt−1,+1)−Ut(y1, . . . , yt−1,−1)). The
stability property implies that this choice satisfies µt ∈ [−1,+1], and by direct calculation it
is seen that we indeed have

max
yt∈{±1}

[
(1− µtyt)

2n + Ut(y1, . . . , yt)
]

= Ut−1(y1, . . . , yt−1).

For further results regarding Cover’s characterization we refer the reader to Rakhlin and
Sridharan (2016b).
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1.7 Notation

General Notation 1{E} will denote the indicator for a meaurable event E , and P{E} will
denote the probability of the event when the measure is clear from context. E will denote
expectation. When P is a probability distribution and X is a formal variable, the notation
“X ∼ P” will be interpreted to mean “X is distributed according to P .”

The notation σ(X) will denote the Borel σ-algebra for a random variable X.

We define

sgn(x) =


1, x > 0.
0, x = 0.
−1, x < 0.

For an integer k ∈ N we define [k] = {1, . . . , k}. For scalars a, b ∈ R we adopt the notation
a ∨ b = max{a, b} and a ∧ b = min{a, b}.

We use a := b to mean “a is defined to be equal to b” and likewise use a =: b to mean “b is
defined to be equal to a.”

∆d will denote the simplex in d dimensions. More generally, we use ∆A or ∆(A) to denote
the set of all Borel probability measures on the set A.

Asymptotic Notation For functions f, g : Rd → R, we say f ∈ O(g) if there exists a
constant C such for all Rd-valued sequences (αn)n≥1 with limn→∞α

n
i →∞ for all i,

lim sup
n→∞

f(αn)
g(αn) ≤ C.

Likewise, we say f ∈ Ω(g) if for all such sequences,

lim inf
n→∞

f(αn)
g(αn) ≥ C.

We say f ∈ Õ(g) and f ∈ Ω̃(g) if f ∈ O(g · polylog(g)) and f ∈ Ω(g/polylog(g)) respectively.

Analysis Throughout this thesis ‖·‖ will denote a norm and ‖·‖? will denote the dual.
Specific norms include the `p norms, denoted ‖·‖p, the Schatten p-norms, denoted ‖·‖Sp , the
spectral norm ‖·‖σ, and the nuclear norm ‖·‖Σ. Bd

p will denote the d-dimension unit `p ball.

We will use the notation (B, ‖·‖) to denote a Banach space B equipped with norm ‖·‖, and
will let (B?, ‖·‖?) denote the dual space. When x ∈ B and y ∈ B?, 〈y, x〉 denotes the dual
pairing, which coincides with the inner product when B is a Hilbert space.

Let Sd denote the set of symmetric matrices in Rd×d, Sd+ denote the set of positive-semidefinite
(psd) matrices, and Sd++ denote the set of positive-definite matrices. For compatible matrices
A and B, 〈A,B〉 = tr(AB>) is the standard matrix inner product.
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A twice-differentiable function f : B→ R is said to be β-smooth with respect to ‖·‖ if its
gradient satisfies ‖∇f(x)−∇f(y)‖? ≤ β‖x− y‖. We will use the phrase “smooth norm”
to refer to any norm for which the function Ψ(x) = 1

2‖x‖
2 is β-smooth with respect to

‖·‖. This is equivalent to the statement that the following inequality holds for all x, y ∈ B:
Ψ(y) ≤ Ψ(x) + 〈∇Ψ(x), y − x〉+ β

2‖y − x‖
2.

A Banach space (B, ‖·‖) is said to be (2, D)-smooth if for all x, y ∈ B (Pinelis, 1994),

‖x+ y‖2 + ‖x− y‖2 ≤ 2‖x‖2 + 2D2‖y‖2.

From this definition it is seen that any Banach spaces with a β-smooth norm has the
(2,
√
β/2)-smoothness property.

A space (B, ‖·‖) is said to have martingale type 2 with constant β if there exists some
Ψ : B→ R such that 1

2‖x‖
2 ≤ Ψ(x), Ψ is β-smooth with respect to ‖·‖, and Ψ(0) = 0 (Pisier,

1975).

For a function f : X → R, we let f ? denote the Fenchel dual, i.e. f ?(y) =
supx∈X [〈y, x〉 − f(x)].

Martingales Let (Xt)t≥1 be a sequence of real- or B-valued random variables adapted to
a filtration (Ft)t≥0. The sequence is said to be martingale if

E[Xt | Ft−1] = Xt−1 ∀t,

and is said to be a martingale difference sequence (MDS) if

E[Xt | Ft−1] = 0 ∀t.

Let (εt)t≥1 be a sequence of Rademacher random variables. A dyadic martingale difference
sequence is a MDS adapted to the filtration Ft = σ(ε1, . . . , εt). Any dyadic MDS can be
written as

Xt = εt · xt(ε1, . . . , εt−1),

where xt(ε1, . . . , εt−1) is a predictable process.

Miscellaneous Learning Notation We will frequently use the notation x1:n = x1, . . . , xn
to refer to a list of examples. When the elements of such a list are vectors in Rd, we will use
xt[i] to denote the tth vector’s ith coordinate. We make reference to the following standard
loss functions.

• Indicator loss/zero-one loss: `(ŷ, y) = 1{ŷ 6= y}.

• Absolute loss: `(ŷ, y) = |ŷ − y|.

• Square loss: `(ŷ, y) = (ŷ − y)2.

• Logistic loss: `(ŷ, y) = log
(
1 + e−ŷy

)
.
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Chapter 2

Learning Models and Adaptive
Minimax Framework

A central aim of this thesis is to give a unified formalism for analyzing adaptive learning
guarantees in real-world settings. This section lays the groundwork for this approach by
developing the adaptive minimax analysis framework outlined in the introduction formally.
We instantiate the general framework for learning settings that feature throughout the thesis:
statistical learning, online learning, online optimization, and contextual bandits.

2.1 Adaptive Minimax Value

We work in the language of statistical decision theory (Van der Vaart, 2000; Lehmann and
Casella, 2006). The class of possible instances in nature is described by a set distributions
P = {Pθ | θ ∈ Θ} over a domain S, parameterized by some set Θ (e.g., for mean estimation,
P could be a set of gaussian distributions with Θ describing the set of means). Nature selects
an element θ ∈ Θ, and the learner receives a sample S ∼ Pθ. Letting Θ̂ denote the set of
decisions, the learner outputs a (potentially randomized) decision function θ̂ : S → Θ̂. For a
fixed loss or risk functional L : Θ̂×Θ→ R, the learner’s expected risk is measured via

E
Pθ

[
L(θ̂(S), θ)

]
. (2.1)

As in the introduction, we let an adaptive rate functional φ : S × Θ → R be given, and
evaluate the learner’s risk relative to φ, i.e.

E
Pθ

[
L(θ̂(S), θ)− φ(S, θ)

]
.

If this quantity is bounded by zero, the functional φ (or “rate”, for short) is said to be
achieved by the rule θ̂. Note that the rate φ captures both niceness in the instance Pθ and
niceness of the outcome S itself.
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The risk relative to the rate φ immediately lends itself to minimax analysis, thereby extending
Wald’s minimax principle (Wald, 1939) to incorporate adaptivity. This is formalized by the
minimax achievability for φ, defined via

V(φ) = inf
θ̂

sup
θ∈Θ

E
Pθ

[
L(θ̂(S), θ)− φ(S, θ)

]
. (2.2)

All learning models studied in this thesis share the following structure, which is a special
case of the general decision setup (2.1): The observation S will be a sequence of examples
of the form z1, . . . , zn with each zt belonging to some set Z. Individual examples may be
drawn i.i.d. (statistical learning) or selected interactively based on the learner’s decisions
(online learning). The learner makes decisions ŷ belonging to a set D, and the loss for a
given prediction-example pair will be `(ŷ, z), where ` : D×Z → R. The final metric through
which performance is measured is the value of the function ` (either empirical or expected,
depending on the setting) relative to an adaptive rate φ.

Warmup: PAC Learning and Statistical Estimation We first consider a setting that
encompasses classical PAC learning (Valiant, 1984), as well as the basic statistical task of
statistical estimation with a well-specified model (e.g. Tsybakov (2008)). We take S to be
a collection of examples {(xt, yt)}nt=1 in X × Y =: Z drawn i.i.d. from a joint distribution
PX×Y (so that zt = (xt, yt)). The marginal distribution PX is arbitrary and the conditional
distribution PY |X is defined via

Y = f ?(X) + ξ, (2.3)
where f ? belongs to a model class F ⊆ (X → Y) and E[ξ | X] = 0. The class F serves as a
model for nature. A learning rule takes as input the sample set S and returns a predictor
ŷS : X → Ŷ (so that D = (X → Ŷ)). We define a point-wise loss ` : Ŷ ×Y → R, and the risk
of a particular predictor ŷ is given by `(ŷ, z) = `(ŷ(x), y). The final notion of risk in (2.1) is

E
S

[
E
P
`(ŷS(x), y)

]
.

Taking Ŷ = Y = {±1}, `(ŷ, y) = 1{ŷ 6= y} and ξ = 0 recovers PAC learning, while setting
Y = R and `(ŷ, y) = (ŷ − y)2 or `(ŷ, y) = |ŷ − y| recovers classical nonparametric regression.

The minimax risk is
Vpac
n (F) = inf

ŷ
sup
PX

sup
PY |X

realizable

E
S

[
E
P
`(ŷS(x), y)

]
,

while the minimax achievability for a rate φ is

Vpac
n (φ) = inf

ŷ
sup
PX

sup
PY |X

realizable

E
S

[
E
P
`(ŷS(x), y)− φ(x1:n, y1:n, PX , PY |X)

]
. (2.4)

We see that the adaptive rate φ can depend on the particular draw of examples {(xt, yt)}nt=1,
as well as the true function f ? and marginal distribution PX . Nice instances for this setting
may include functions f ? for which the decision boundary is simple—at least simple in areas
where the marginal distribution PX is concentrated (Boucheron et al., 2005)—-or might
include instances where the variance of ξ is low.
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2.2 Statistical Learning

Existence of a function f ? that realizes the model PY |X is a rather strong assumption. We
would like to develop methods that enjoy prediction guarantees when this assumption is
violated, but hopefully can adapt when the assumption does hold.

Protocol 1 Statistical Learning
Nature selects distrbution PX×Y .
Learner receives samples S = (x1, y1), . . . , (xn, yn) i.i.d. from PX×Y .
Learner returns predictor ŷS ∈ (X → Ŷ). (For proper learning, ŷS ∈ F .)

For classification, the agnostic PAC framework (Haussler, 1992; Kearns et al., 1994) generalizes
PAC learning to the case where the joint distribution PX×Y is arbitrary. For regression,
this is referred to as the misspecified model setting in nonparametric statistics (Nemirovski,
2000; Tsybakov, 2008) and aggregation (Tsybakov, 2003; Lecué and Rigollet, 2014). The
distribution PX×Y may be completely unrelated to the model class F , and there may indeed be
distributions P for which the expected risk E `(f(x), y) is large for all f ∈ F (for classification,
consider the case where labels are drawn uniformly at random). Clasically, instead of looking
at minimax risk in the sense of `, agnostic learning considers minimax regret:1

V iid
n (F) = inf

ŷ
sup
PX×Y

E
S

[
E `(ŷS(x), y)− inf

f∈F
E `(f(x), y)

]
. (2.5)

Here the word “regret” reflects that performance is measured relative the class F , which
serves as a benchmark or comparator. A bound on the right-hand-side of this expression is
also referred to as an exact oracle inequality in statistics (Tsybakov, 2003; Lecué and Rigollet,
2014).

In this case, a natural way to define minimax achievability for an adaptive rate B is

V iid
n (F ,B) = inf

ŷ
sup
PX×Y

E
S

[
E `(ŷS(x), y)− inf

f∈F
E `(f(x), y)− B(x1:n, y1:n, PX×Y )

]
. (2.6)

Note on Terminology. Throughout this thesis we use the symbol φ for adaptive rates that
bound risk and the symbol B for adaptive rates that bound regret.

This formulation already subsumes many notions of adaptivity proposed in statistical learning
theory (Boucheron et al., 2005). To capture further notions of adaptivity, such as PAC-
Bayesian bounds (McAllester, 1999), we can allow the adaptive rate B to depend on the
benchmark itself, i.e.

V iid
n (F ,B) = inf

ŷ
sup
PX×Y

E
S

sup
f∈F

[E `(ŷS(x), y)− E `(f(x), y)− B(f ; x1:n, y1:n, PX×Y )]. (2.7)

Of course, we can go further and return to adaptive rates φ that upper bound the expected
risk itself, with the understanding that any achievable rate of this form must be large for

1Note that minimax regret still falls into the statistical decision theory framework for the right choice of L.
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some instances PX×Y :

V iid
n (φ) = inf

ŷ
sup
PX×Y

E
S

[E `(ŷS(x), y)− φ(x1:n, y1:n, PX×Y )]. (2.8)

This formulation is syntactically very close to that of Vpac
n (φ) in (2.4), but the key difference

is that we have dropped the assumption on the conditional distribution.

2.3 Online Supervised Learning

While the agnostic statistical learning setting is certainly more general than the PAC
framework, it still makes a strong assumption, namely that the examples {(xt, yt)}nt=1 are
i.i.d. An alternative is online learning, where data examples arrive one-by-one and the learner
must make predictions on demand, and the data generating process is arbitrary or even

Protocol 2 Online Supervised Learning
1: for t = 1, . . . , n do
2: Nature provides xt ∈ X .
3: Learner selects randomized strategy qt ∈ ∆(Ŷ).
4: Nature provides outcome yt ∈ Y .
5: Learner draws ŷt ∼ qt and incurs loss `(ŷt, yt).
6: end for

adversarial.

The exact setup is as follows. The learner plays n rounds, and for each round t they receive
an instance xt and must produce a prediction ŷt using the new instance as well as the
previous observations (x1, y1, ) . . . , (xt−1, yt−1). Nature chooses the true outcome yt, and the
cumulative loss is given by 1

n

∑n
t=1 `(ŷt, yt). As in agnostic learning, classical (non-adaptive)

online learning evaluates learning procedures based on their regret against a benchmark class
F :

1
n

n∑
t=1

`(ŷt, yt)− inf
f∈F

1
n

n∑
t=1

`(f(xt), yt).

Like the bit prediction setting in the introduction, we formulate minimax analysis for online
learning by imagining a game between the learner and nature. At each round the contribution
to regret is a max-min-max problem conditioned on the history so far: Nature chooses xt
to maximize regret, then the learner chooses ŷt to minimize regret given nature’s decision.
Finally, nature picks a maximally bad value for yt based on the learner’s decision. The process
is repeated for all n rounds, giving rise to the following expression for the minimax value:

Vol
n (F) = sup

x1
inf
ŷ1

sup
y1
. . . sup

xn
inf
ŷn

sup
yn

[
1
n

n∑
t=1

`(ŷt, yt)− inf
f∈F

1
n

n∑
t=1

`(f(xt), yt)
]
.2

2Online supervised learning fits into the decision theory framework by taking Ŷ = D and `(ŷ, y) = `(ŷ, y);
note that this learning setting is inherently improper.
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We adopt the following notation to write expressions of this type more succinctly:

Vol
n (F) = ⟪sup

xt
inf
ŷt

sup
yt
⟫
n

t=1

[
1
n

n∑
t=1

`(ŷt, yt)− inf
f∈F

1
n

n∑
t=1

`(f(xt), yt)
]
, (2.9)

where the notation ⟪?⟫nt=1 denotes interleaved application of the operator ? from time
t = 1, . . . , n. The difference of the cumulative losses of the forecaster and the loss of
any particular benchmark f ∈ F , which we refer to to as regret against f , is denoted
Regn(f) = ∑n

t=1 `(ŷt, yt)− `(f(xt), yt).

Turning to adaptivity, we can either ask for an adaptive regret bound B and look at the
minimax achievability of B via

Vol
n (F ,B) = ⟪sup

xt
inf
ŷt

sup
yt
⟫
n

t=1
sup
f∈F

[
1
n

n∑
t=1

`(ŷt, yt)−
1
n

n∑
t=1

`(f(xt), yt)− B(f ; x1:n, y1:n)
]
,

(2.10)
or we can ask for a general adaptive risk bound φ and look at minimax achievability via

Vol
n (φ) = ⟪sup

xt
inf
ŷt

sup
yt
⟫
n

t=1

[
1
n

n∑
t=1

`(ŷt, yt)− φ(x1:n, y1:n)
]
. (2.11)

From this definition, we see that for any φ there always exists an algorithm that guarantees

1
n

n∑
t=1

`(ŷt, yt) ≤ φ(x1:n, y1:n) + V(φ) ∀ sequences x1:n, y1:n.

In a slightly more general setting, Protocol 2, we allow the learner to be randomized, i.e.
to select a distribution qt from which the prediction ŷt is sampled only after yt.3 For such
randomized learners, minimax achievability is written

Vol
n (φ) = ⟪sup

xt
inf
qt

sup
yt

E
ŷt∼qt
⟫
n

t=1

[
1
n

n∑
t=1

`(ŷt, yt)− φ(x1:n, y1:n)
]
. (2.12)

The online-to-batch principle, dating back to the very genesis of learning theory (Vapnik and
Chervonenkis, 1968), implies that for any rate φ(x1:n, y1:n),

Vpac
n (φ) ≤ V iid

n (φ) ≤ Vol
n (φ). (2.13)

An important development in this thesis is that while there are indeed rates φ for which
Vol
n (φ)� V iid

n (φ), for many types of adaptivity of practical interest we have Vol
n (φ) ≤ c·V iid

n (φ)
for some small constant c, meaning that even when offline learning is the end goal we pay
essentially no price for considering the more general framework, and can therefore leverage
the advantages (e.g. single pass learning) that it provides.

3This setting is necessary to handle various technical issues such as non-convex losses.
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2.4 Online Convex Optimization

Online convex optimization (OCO) is close relative of the online supervised learning setting,
in which a learner makes vector-valued predictions and is evaluated against an adversari-
ally chosen sequence of convex loss functions. This model is useful for solving large-scale
empirical risk minimization problems for machine learning, as well as for directly performing
minimization of the population risk in statistical learning and stochastic optimization. In
particular, regret bounds in the online convex optimization immediately imply upper bounds
on the oracle complexity of stochastic convex optimization.

We describe a randomized variant of the OCO setting here. We play n rounds t = 1, . . . , n.
At each round the learner chooses a distribution qt over a convex set W. Nature chooses a
convex loss ft, and the learner samples wt ∼ qt and experiences loss ft(wt). Depending on
the application nature may be constrained to choose, for example, 1-Lipschitz or 1-smooth
convex functions. We let Z denote their set of decisions.

Protocol 3 Online Convex Optimization
for t = 1, . . . , n do

Learner selects strategy qt ∈ ∆(W) for convex decision set W .
Nature selects convex loss ft : W → R.
Learner draws wt ∼ qt and incurs loss ft(wt).

end for

In online convex optimization the usual notion of performance is regret relative to the
benchmark constraint set W . In particular, the (non-adaptive) minimax value is given by

Voco
n (W) = ⟪ inf

qt∈∆(W)
sup
ft∈Z

E
wt∼qt
⟫
n

t=1

[
1
n

n∑
t=1

ft(wt)− inf
w∈W

1
n

n∑
t=1

ft(w)
]
. (2.14)

To analyze adaptive regret bounds B, minimax achievability is defined through

Voco
n (W ,B) = ⟪ inf

qt∈∆(W)
sup
ft∈Z

E
wt∼qt
⟫
n

t=1
sup
w∈W

[
1
n

n∑
t=1

ft(wt)−
1
n

n∑
t=1

ft(w)− B(w ; f1:n)
]
, (2.15)

and for adaptive risk bounds minimax achievability is given by

Voco
n (φ) = ⟪ inf

qt∈∆(W)
sup
ft∈Z

E
wt∼qt
⟫
n

t=1

[
1
n

n∑
t=1

ft(wt)− φ(f1:n)
]
. (2.16)

Online convex optimization can be thought of as a special case of the online supervised
learning setting when there are no contexts (X = {∅}), but the settings are distinguished in
literature by a focus on appropriately handling the complexity of the output space, which is
typically high-dimensional in OCO applications.
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2.5 Contextual Bandits

Online supervised learning and online convex optimization are very general and powerful
models that are useful both for streaming learning settings and (via online-to-batch) offline
statistical learning. One drawback is that both settings make the assumption that the
entire loss function `(·, zt) is observable, while in many applications we may only observe
the value `(ŷt, zt) under the learner’s decision. Such a model is appropriate in news article
recommendation and related sequential decision making problems: The learner repeatedly
suggests news articles to users on a website and would like to improve their performance
over time, but they only observe whether each user views the article that was suggested, not
which of the potential articles the user would have preferred in hindsight (Li et al., 2010).
The contextual bandit model formalizes this problem.

Protocol 4 Contextual Bandit
for t = 1, . . . , n do

Nature provides context xt ∈ X .
Learner selects randomized strategy qt ∈ ∆(A).
Nature provides outcome `t ∈ L ⊂ RA+.
Learner draws action at ∼ qt and observes loss `t(at).

end for

To describe the setting we adopt standard notation from contextual bandit literature (e.g.
Agarwal et al. (2014)). The learner plays n rounds. In each round t they receive an instance xt
and must select a discrete action at ∈ A := [K] using the new instance as well as the previous
observations. We allow the learner to randomize and denote their distribution qt ∈ ∆(A).
Once the distribution is selected, nature chooses a non-negative loss vector `t ∈ L ⊂ RA+, and
then the learner samples at ∼ qt. Their instantaneous loss is `t(at), and the do not observe
`t(a) for actions a 6= at.

Contextual bandit literature focuses on regret against a benchmark class of discrete policies
Π ⊆ (X → A). In particular minimax regret is defined via

Vcb
n (Π) = inf

q
sup
`

E
[

1
n

n∑
t=1

`t(at)− inf
π∈Π

1
n

n∑
t=1

`t(π(xt))
]
,

where the infimum ranges over all randomized learner policies q (i.e., sequences of mappings
from past outcomes to action distributions), the supremum ranges over all adversary policies
`, and the expectation is with respect to the learner’s randomization.4 We define minimax
achievability for adaptive regret bounds B and adaptive risk bounds φ via

Vcb
n (Π,B) = inf

q
sup
`

E sup
π∈Π

[
1
n

n∑
t=1

`t(at)−
1
n

n∑
t=1

`t(π(xt))− B(π ; `1:n)
]
,

4The partial feedback in contextual bandits prevents one from writing the minimax value in a step-by-step
fashion along the lines of (2.9), which is why we adopt the policy formulation here.
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and
Vcb
n (φ) = inf

q
sup
`

E
[

1
n

n∑
t=1

`t(at)− φ(`1:n)
]
,

respectively.

2.6 The Minimax Theorem

Defining minimax achievability is a useful first step, but how can we actually derive bounds
on this value, e.g. on Vol

n (φ)? The starting point of the approach we develop in Part II is
the minimax theorem, which allows us to exchange the order of the min and max player in
repeated min-max expressions such as (2.11). The version of the theorem we use is due to
Sion (Sion, 1958), and generalizes the classical minimax theorem of Von Neumann.
Theorem 1 (Sion’s Minimax Theorem). Let F : U × V → R, where U is a convex and
compact subset of a linear topological space and and V is convex subset of a linear topological
space. If F (u, ·) is upper semicontinuous and quasiconcave over V for all u ∈ U and F (·, v)
is lower semicontinuous and quasiconvex over U for all v ∈ V, then

min
u∈U

sup
v∈V

F (u, v) = sup
v∈V

min
u∈U

F (u, v). (2.17)

Our use of the minimax theorem throughout this thesis follows an approach pioneered by
Abernethy et al. (2008) and Rakhlin et al. (2010). We repeatedly invoke the following fact in
our results for the online learning and online convex optimization models.
Proposition 1. Let F : (X ×Y × Ŷ)n → R be a uniformly bounded function. Let Y and Ŷ
be compact. Then

⟪ sup
xt∈X

inf
qt∈∆

Ŷ

sup
yt∈Y

E
ŷt∼qt
⟫
n

t=1

F ((x1, y1, ŷ1), . . . , (xn, yn, ŷn))

= ⟪ sup
xt∈X

sup
pt∈∆Y

inf
ŷt∈Ŷ

E
yt∼pt
⟫
n

t=1
F ((x1, y1, ŷ1), . . . , (xn, yn, ŷn)).

2.7 Chapter Notes

There are many further learning models that will not be covered in detail in this thesis,
and for which extending the techniques we present is an interesting direction for future
research. Notable examples include various combinations of the settings discussed in this
chapter, including stochastic contextual bandits and stochastic optimization, bandit linear
optimization, and bandit convex optimization, as well as other interactive learning settings
such as active learning (Hanneke, 2014; Krishnamurthy et al., 2017) and reinforcement learning
(Szepesvári, 2010). It is straightforward to extend the definition of minimax achievability to
these settings and beyond.

28



Part II

Equivalence of Prediction,
Martingales, and Geometry
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Chapter 3

Overview of Part II

In this part of the thesis we introduce a new equivalence between adaptive online learn-
ing, martingale inequalities, and Burkholder functions (recall Figure 1.1). This allows to
systematically:

1. Characterize minimax achievability of adaptive learning guarantees in learning models
of practical importance, and do so in an algorithm-independent fashion.

2. Develop efficient algorithms to obtain achievable adaptive rates.

The roadmap for the development of the equivalence is as follows.

• First, in Chapter 4 we prove the equivalence for a simplified version of the online
supervised learning setting.

• In Chapter 5 we extend the equivalence to the general online supervised learning setting,
and also introduce a notion of sufficient statistics for online learning. The development
of sufficient statistics allows us to deduce additional geometric properties for Burkholder
functions when we apply the Burkholder method, and as a consequence leads to online
learning algorithms with reduced memory requirements.

• Finally, in Chapter 6 we develop probabilistic tools to directly prove upper bounds on
martingale inequalities that arise in the equivalence framework. These tools can be
used to certify achievability (and thus existence of Burkholder functions) for concrete
adaptive rates of interest without necessarily exhibiting an explicit algorithm, and in
particular allow us to deduce achievability of adaptive rates for complicated models (e.g.,
decision trees and neural networks) where it is not possible to derive computationally
efficient algorithms with worst-case performance guarantees. The probabilistic tools of
Chapter 6 play a role similar to that of empirical process theory the classical statistical
learning model.

While the tools in this part of the thesis are specific to online learning, they form the backbone
for all of the new adaptive learning guarantees and algorithms we develop throughout Part III.
Indeed, we use the tools to derive powerful consequences for tasks beyond online learning,
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including statistical learning, optimization, boosting, and bandits. Focusing on the online
learning setting for now is advantageous for the following reasons.

• Considering a more powerful adversary than in e.g., the batch statistical learning setting,
turns out to lead to stronger analysis tools. In particular, the equivalence we develop
through the Burkholder method exploits that the learner must adapt to data generated
by an arbitrary and potentially adaptive adversary.

• Online learning can be used to solve both offline statistical learning (via online-to-batch
conversion (Vapnik and Chervonenkis, 1968)) and contextual bandits (via importance-
weighting reductions (Auer et al., 2002b)). Even when our goal is to solve the batch
statistical learning setting (i.e., to give bounds on V iid

n (φ)), we do not lose much
by focusing on the harder online learning setting because we derive adaptive rates.
The adaptive matrix prediction example we develop in this chapter exemplifies this
phenomenon.
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Chapter 4

The Equivalence

This chapter develops the equivalence of adaptive learning, martingale inequalities, and
Burkholder functions in a simplified version of the general online supervised learning setting.
The purpose of this simplification is to communicate the key ideas and techniques while
keeping exposition as simple as possible. Using the online collaborative filtering task as
a running example, we first propose a new notion of adaptivity, then derive an efficient
algorithm to achieve this new type of adaptivity using the Burkholder method.

We consider the following setup, which is a special case of Protocol 2 where we restrict to
linear losses. At each time t = 1, . . . , n the learner receives xt ∈ X , which we take to be a
subset of some vector space. The learner predicts ŷt ∈ R, and receives an outcome yt ∈ {±1}.
Performance is measured via the linear loss `(ŷt, yt) = −ŷt · yt, and the goal is a adaptive
prediction guarantee of the form1

n∑
t=1
−ŷt · yt ≤ φ(y1x1, . . . , ynxn) for all sequences x1:n,y1:n. (4.1)

Note that the adaptive rate φ depends on xt and yt through the product ytxt. This structure
simplifies presentation, but will be relaxed in Chapter 5.

4.1 Running Example: Matrix Prediction

To ground our development in the reality, let us show how the online learning setting in (4.1)
can be used to solve an online version of the classical collaborative filtering problem (Billsus
and Pazzani, 1998). The online collaborative filtering problem proceeds as follows. At each
time t = 1, . . . , n we receive a user-movie pair (it, jt) ∈ [d1]× [d2]. Our goal is to predict the
user’s affinity for the movie. We predict a value ŷt ∈ R and receive an outcome yt ∈ {±1},
with a value of +1 indicating that the user likes the movie and −1 indicating that they dislike

1There is no need to allow for randomized learners for the development in this chapter. This extra level of
generality is covered in Chapter 5.
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it. The instantaneous loss is `(ŷt, yt) = −ŷt · yt, so it is in our best interest to confidently
predict the same sign as yt.

To develop algorithms, we adopt the well-known approach of formulating collaborative filtering
as matrix factorization (Azar et al., 2001; Rennie and Srebro, 2005; Srebro and Shraibman,
2005; Hazan et al., 2012). A ubiquitous assumption in these works and beyond is that the
underlying matrix of user-movie affinities is modeled well by a low-rank matrix. We do
not explicitly make such an assumption, but we will develop algorithms that predict well
whenever this is the case. Specifically, letting xt = eite

>
jt ∈ Rd1×d2 denote the incidence matrix

for the user-movie pair at time t, we focus on adaptive regret guarantees of the form
n∑
t=1
−ŷt · yt ≤ inf

w:‖w‖Σ≤τ

n∑
t=1
−〈w, xt〉 · yt + B(y1x1, . . . , ynxn), (4.2)

where ‖·‖Σ denotes the nuclear norm, 〈w, x〉 is the standard matrix inner product, and B is
an adaptive regret bound. In particular, to predict as well as the best rank-r matrix with
entry magnitudes bounded by 1 (up to the regret bound B), it suffices to take τ =

√
rd1d2

in this expression. Note that we have chosen to compete with the set of all nuclear norm
bounded matrices rather than explicitly competing with the set of all low-rank matrices
because this typically leads to computationally efficient algorithms; this is the standard
approach in high-dimensional statistics (Candès and Recht, 2009; Candes and Plan, 2010;
Foygel and Srebro, 2011).

For linear prediction problems with the structure in (4.2), the algorithmic workhorses in online
learning are the mirror descent and dual averaging/follow-the-regularized-leader families of
algorithms (Nemirovski et al., 1983; Ben-Tal and Nemirovski, 2001; Hazan, 2016). To illustrate
the necessity of new algorithmic ideas for adaptive learning, let us examine how mirror descent
fares for the matrix prediction problem. Using standard techniques (Arora et al., 2012; Hazan
et al., 2012) it follows that mirror descent with the matrix entropy regularizer, also known as
the matrix multiplicative weights strategy, can ensure an inequality of the form (4.2) with

B(y1x1, . . . , ynxn) ∝ τ ·

√√√√log (d1 + d2) ·
n∑
t=1
‖ytxt‖2

σ. (4.3)

For our setting, ‖ytxt‖σ = 1 for all t, and so we have B(x1:n) ≈
√
nrd1d2. This is somewhat

unfortunate: With such an bound our average regret will not drop below one until we have
seen every entry in the matrix! This is not the end of the story, however. It turns out that
mirror descent is missing part of the problem geometry. Let us investigate further.

• On one hand, it turns out that the rate
√
nrd1d2 is minimax optimal, meaning there

are indeed sequences for which any algorithm competing with the nuclear norm ball
must have poor regret. In other words, any achievable function B(y1x1, . . . , ynxn) must
be large for some sequences.

• On the other hand, it is known that in the batch statistical learning setting, if the
observed entries are generated uniformly at random i.i.d., it is possible to give a bound
of the form (4.2) with B ≈

√
nrmax{d1, d2}. This is a significant improvement, and

guarantees that we generalize after seeing roughly r ·max{d1, d2} entries.
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We will develop an algorithm that smoothly interpolates between the “nice data” regime
above (where entries are uniform and i.i.d.) and the minimax rate (4.3), without having to
know in advance whether data is nice.

The algorithm is developed by leveraging the equivalence of prediction inequalities, martingale
inequalities, and Burkholder functions. In particular, the equivalence will reveal that adaptive
algorithms that exploit the niceness described above are closely related to the so-called matrix
Khintchine inequalities (Lust-Piquard and Pisier, 1991; Tropp, 2012; Mackey et al., 2014).

4.2 Emergence of Martingales

As a first step toward proving the equivalence, we show that for any adaptive rate φ, achiev-
ability of a prediction guarantee of the form (4.1) implies a certain algorithm-independent
inequality involving φ that we call a generalized martingale inequality.
Proposition 2. Let an adaptive rate φ be fixed, and suppose that for any n ≥ 1 there exists
some algorithm that attains the prediction inequality (4.1). Then it holds that

inf
n

inf
x1:n

E
ε
[φ(ε1x1(ε), . . . , εnxn(ε))] ≥ 0. (4.4)

Here the infimum ranges over all X -valued predictable processes or trees x of the form (xt)nt=1,
where xt : {±1}t−1 → X , and ε ∈ {±1}n is a sequence of Rademacher random variables.
Note on Terminology. For the remainder of this thesis, we adopt the shorthand xt(ε) :=
xt(ε1:t−1) for predictable processes x. When the dependence is clear from context, we
abbreviate further to xt := xt(ε). We call (4.4) a generalized martingale inequality because
the sequence (εtxt)nt=1 is a martingale difference sequence. Martingales with this structure
are sometimes called dyadic martingales or Paley-Walsh martingales (Hytönen et al., 2016).

Proof. The proof is quite simple, and follows the same reasoning used for Cover’s character-
ization in Section 1.5. The idea is that since (4.1) is guaranteed to hold for every sequence
x1:n, y1:n, it must hold in particular for a class of sequences that we are free to choose.

We first draw a sequence of independent Rademacher random variables ε ∈ {±1}n and set
yt = εt. We then pick an arbitrary X -valued predictable process x and set xt = xt(ε). With
this choice, (4.1) implies that for every draw of ε,

n∑
t=1
−ŷt · εt ≤ φ(ε1x1, . . . , εnxn).

In the supervised learning model the prediction ŷt can only depend on ε1:t−1. Consequently,
the left-hand-side of this inequality has mean zero for any algorithm, and so taking expectation
over the draw of ε leads us to conclude

E
ε
[φ(ε1x1, . . . , εnxn)] ≥ 0.

The result (4.4) follows because the choice of x in this argument is arbitrary.
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In Section 4.5 we show that (4.4) is also necessary. This gives us a powerful modeling tool:
To check achievability of the rate φ, it suffices to check that algorithm-independent inequality
(4.4) holds, and conversely if the inequality does not hold the rate is not achievable. Before
proving this fact, we spend a moment developing generalized martingale inequalities—of
which (4.4) is a special case—in more detail.

4.3 Generalized Martingale Inequalities

Let (Xt)t≥1 be a martingale difference sequence; that is, a sequence of vector-valued random
variables with the property that E[Xt | X1, . . . , Xt−1] = 0 for all t ≥ 1. We define a generalized
martingale inequality to be any inequality of the form

EV (X1, . . . , Xn) ≤ 0 ∀n ≥ 1, (4.5)

where V : ∪n≥1X n → R is some fixed function. Observe that the necessary condition (4.4)
falls into this format by selecting V = −φ. In fact, many familiar inequalities are captured
by (4.5).
Example 1 (Azuma-Hoeffding Inequality). The Azuma-Hoeffding inequality (e.g. (Boucheron
et al., 2013)) can be written as the observation that

E exp
(

n∑
t=1

εtxt −
x2
t

2

)
≤ 1.

for all n ≥ 1 and all real-valued predictable processes x. The corresponding function V for
this inequality is

V (x1, . . . , xn) = exp
(

n∑
t=1

xt −
x2
t

2

)
− 1.

Example 2 (Nemirovski’s Inequality). Nemirovski’s inequality (Nemirovski, 2000; Boucheron
et al., 2013) states that if ‖·‖ is any smooth norm2 in a Banach space B, there exists a
constant CB such that

E
∥∥∥∥∥
n∑
t=1

Xt

∥∥∥∥∥
2

≤ CB ·
n∑
t=1

E‖Xt‖2. (4.6)

for all B-valued martingale difference sequences (Xt)nt=1 and all n ≥ 1. The corresponding
function V is

V (x1, . . . , xn) =
∥∥∥∥∥
n∑
t=1

xt

∥∥∥∥∥
2

− CB ·
n∑
t=1
‖xt‖2.

4.4 The Burkholder Method

Burkholder’s method gives a characterization of the generalized martingales (4.5) developed in
the previous section. Informally, the characterization states that whenever such an inequality

2Cf. Section 1.7.
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holds for a particular function V , there exist certain “extremal functions” that a) imply a
strengthened version of the original inequality and b) enjoy a certain “restricted concavity”
property. In a little more detail, Burkholder’s characterization has two implications:

1. Given a function V , we can check if it has the restricted concavity property. If not,
there exists a Burkholder function U that does have this property, and for which V ≤ U
and EU ≤ 0.

2. Given a function U with the desired concavity property, there is a simple inductive
proof of the inequality EV ≤ 0.

The precise characterization—specialized to dyadic martingales for ease of presentation—is
as follows.
Theorem 2 (Burkholder’s Characterization (Burkholder, 1981, 1984, 1986, 1991)). The
following statements are equivalent:

• The inequality
EV (ε1x1, . . . , εnxn) ≤ 0 (4.7)

holds for all predictable processes x and n ≥ 1.

• There exists a function U : ∪n≥0X n → R such that

1o V (x1, . . . , xn) ≤ U(x1, . . . , xn) for all x1, . . . , xn and n ≥ 1.

2o U(∅) ≤ 0.

3o For all x1, . . . , xn, n ≥ 0, and x ∈ X ,

EU(x1, . . . , xn, εx) ≤ U(x1, . . . , xn). (restricted concavity)

Example 3 (Example 1 and Example 2 continued). In fact, for both Example 1 and Example 2
the functions V already satisfy properties 1o/2o/3o, and therefore cannot be strengthened.
Properties 1oand 2oare immediate for both functions. For Example 1 property 3o follows using
the standard moment generating function bound Eε ex ≤ e

x2
2 . For Example 2, 3o follows by

using the geometric propertythat for any β-smooth norm, the function Ψ(x) = 1
2‖x‖

2 satisfies
Ψ(x) ≤ Ψ(y) + 〈∇ψ(x), y − x〉+ β

2‖x‖
2.

We now prove Theorem 2.

Proof. Burkholder Function =⇒ Martingale Inequality.
Let the process x and n be fixed. As promised, the properties of the Burkholder function
lend themselves to a simple proof of the martingale inequality via step-by-step peeling.

E εV (ε1x1, . . . , εnxn)
1◦
≤ E εU(ε1x1, . . . , εnxn)

3◦
≤ E εU(ε1x1, . . . , εn−1xn−1)

3◦
≤ . . .

3◦
≤ U(∅)

2◦
≤ 0.

Martingale Inequality =⇒ Burkholder Function.
We exhibit a particular choice for the Burkholder function which will be shown to satisfy the
desired properties:

U?(x1, . . . , xt) = sup
n≥t

sup
xt+1:n

E
εt+1:n

V (x1, . . . , xt, εt+1xt+1, . . . , εnxn).
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Property 1o is immediately implied by this definition, since we can set n = t. Prop-
erty 2o follows because the inequality (4.7) is assumed to hold, and because U?(∅) =
supn≥1 supx1:n Eε1:n V (ε1x1, . . . , εnxn). Property 3o is where the definition of U? helps out the
most. For any x1, . . . , xt−1, and x ∈ X ,

E
ε

U?(x1, . . . , xt−1, εx) = E
ε

sup
n≥t

sup
xt+1:n

E
εt+1:n

V (x1, . . . , εx, εt+1xt+1, . . . , εnxn)

≤ sup
n≥t−1

sup
xt:n

E
εt:n

V (x1, . . . , εxt, εt+1xt+1, . . . , εnxn)

= U?(x1, . . . , xt−1).

The inequality here holds because we can fold the expectation of the increment εx into the
supremum in the definition U?.

Note that the proof of Theorem 2 in fact provides a construction for the “optimal” function
U, but it is not clear how to directly evaluate the optimal function efficiently (see Section 5.8
for a discussion of the computational prospects of automating this process).

Interestingly, an result by Pisier predating that of Burkholder can be seen as an application of
Burkholder’s method to the special case of Nemirovski-style inequalities (which belong to the
class of martingale type inequalities in Banach space literature) (Pisier, 1975). Pisier showed
that for any norm ‖·‖, not a-priori known to be smooth, that if the inequality (4.6) holds
then there exists a smooth function that majorizes 1

2‖x‖
2 and satisfies the other properties of

Theorem 2.

While the examples in this section are quite simple, in a moment we will show that for the
matrix prediction setup, the natural function V does not have the desired concavity property,
and therefore Burkholder’s method yields a strengthened inequality. First, we show how the
Burkholder function U can be used for prediction.

4.5 The Burkholder Algorithm

We have already shown that achievability of the adaptive rate φ implies a generalized
martingale inequality (4.1). We now close the loop and show that the generalized martingale
inequality is also sufficient for achievability. This theorem is algorithmic in nature: It yields
a strategy that attains the adaptive rate φ, and that is efficient in terms of queries to U. We
call the resulting strategy the Burkholder algorithm.
Theorem 3 (Burkholder Algorithm). Let an adaptive rate φ be fixed. Then the following
statements are equivalent:

• For every n ≥ 1 there exists some algorithm that attains the prediction inequality (4.1).

• The following generalized martingale inequality holds:

inf
n

inf
x1:n

E
ε
[φ(ε1x1, . . . , εnxn)] ≥ 0.
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Furthermore, the following strategy achieves φ whenever it is achievable:

1. Find a Burkholder function U for V := −φ.

2. At each time t, play

ŷt = U(y1x1, . . . ,−xt)−U(y1x1, . . . ,+xt)
2 .

Proof. We prove that the martingale inequality implies achievability of φ. First, we invoke
Theorem 2, which implies that there exists a Burkholder function U for V = −φ. The
remainder of the proof is to show that the Burkholder algorithm, run with U, achieves φ. To
begin, Property 1o clearly implies

n∑
t=1
−ŷt · yt − φ(y1x1, . . . , ynxn) ≤

n∑
t=1
−ŷt · yt + U(y1x1, . . . , ynxn).

We now analyze the contribution of the final round n to the gap above. Let xn be fixed.
Then clearly the best strategy ŷ given the history so far is to solve

min
ŷ∈R

max
yn∈[−1,+1]

[−ŷn · yn + U(y1x1, . . . , ynxn)],

which we rewrite as

min
ŷ∈R

max{−ŷn + U(y1x1, . . . ,+xn), ŷn + U(y1x1, . . . ,−xn)}.

The solution is to set the two terms inside the max equal, which leads to

ŷn = U(y1x1, . . . ,−xn)−U(y1x1, . . . ,+xn)
2 .

Plugging in this choice for ŷn, we see that

n∑
t=1
−ŷt · yt + U(y1x1, . . . , ynxn) =

n−1∑
t=1
−ŷt · yt + E

ε
U(y1x1, . . . , εxn).

To proceed, we use Property 3o to arrive at any upper bound of

n−1∑
t=1
−ŷt · yt + E

ε
U(y1x1, . . . , εxn) ≤

n−1∑
t=1
−ŷt · yt + U(y1x1, . . . , xn−1).

Repeating this argument back until time t = 1, we get
n∑
t=1
−ŷt · yt + U(y1x1, . . . , ynxn) ≤ U(∅)

2◦
≤ 0,

and so the rate is achieved.
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In addition to being simple and elegant, this algorithm enjoys the additional property of being
horizon-independent. We also remark that the argument suggests a set of adaptive rates that
are pareto-optimal within the class of all achievable rates. Namely, if φ is achievable, the
following strictly stronger inequality is also achievable:

n∑
t=1
−ŷt · yt ≤ −U(y1x1, . . . , ynxn) for all sequences x1:n, y1:n, (4.8)

where U is any Burkholder function for V = −φ.

In fact, it turns out that we can directly prove that (4.1) is sufficient for achievability of
the rate φ without directly invoking the Burkholder method. This is explored in the next
chapter.

4.6 Burkholder Function for Matrix Prediction

We now return to the matrix prediction setting in (4.2). We derive a new efficient and
adaptive algorithm by exhibiting an explicit Burkholder function for the problem. To proceed
we must first nail down our choice of adaptive rate. We do so with the help of the equivalence.
Recall that our desired prediction guarantee has the form

φ(y1x1, . . . , ynxn) = inf
w:‖w‖Σ≤τ

n∑
t=1
−〈w, xt〉 · yt + B(y1x1, . . . , ynxn),

where B has yet to be decided. We make the simplification

φ(y1x1, . . . , ynxn) = inf
w:‖w‖Σ≤τ

〈
w,

n∑
t=1
−xtyt

〉
+ B(y1x1, . . . , ynxn)

= −τ ·
∥∥∥∥∥
n∑
t=1

xtyt

∥∥∥∥∥
σ

+ B(y1x1, . . . , ynxn).

Hence, via the equivalence, any prediction guarantee for this setting implies a martingale
inequality of the form

τ · E
ε

∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
σ

≤ E
ε
B(ε1x1, . . . , εnxn),

for all n ≥ 1 and all matrix-valued predictable processes x.

If all xt are indicators for the same entry in the matrix, the left-hand side of this expression
can be as large as τ ·

√
n—or

√
rd1d2n for the prescribed choice of τ—which matches the

Mirror Descent bound and gives vacuous guarantees in the worst case, thereby ruling out any
uniform (constant) function B if we want to give a useful learning guarantee.

However, from the matrix Khintchine inequalities (Lust-Piquard and Pisier, 1991; Tropp,
2012; Mackey et al., 2014), we know that the following inequality holds for any sequence
x1, . . . , xn:

E
ε

∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
σ

.

√√√√∥∥∥∥∥
n∑
t=1

xtx>t

∥∥∥∥∥
σ

∨
∥∥∥∥∥
n∑
t=1

x>t xt

∥∥∥∥∥
σ

.
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Note that this inequality only holds for individual sequences and not general martingales,
but we will use it as inspiration and search for a Burkholder function for the generalized
martingale inequality induced by

V (y1x1, . . . , ynxn) =
∥∥∥∥∥
n∑
t=1

ytxt

∥∥∥∥∥
σ

− c ·

√√√√∥∥∥∥∥
n∑
t=1

xtx>t

∥∥∥∥∥
σ

∨
∥∥∥∥∥
n∑
t=1

x>t xt

∥∥∥∥∥
σ

,

where we have set τ = 1 without loss of generality, and where c > 0 is some constant whose
value will be decided later.

We can write this expression more succinctly by introducing the Hermitian dilation and
the squared Hermitian dilation (Tropp, 2012). For any matrix X ∈ Rd1×d2 we define its
Hermitian dilation H(X) ∈ Sd1+d2 and square M(X) ∈ Sd1+d2 via:

H(X) =
(

0 X
X> 0

)
M(X) = H(X)2 =

(
XX> 0
0 X>X

)
. (4.9)

With this notation we can write

V (y1x1, . . . , ynxn) =
∥∥∥∥∥
n∑
t=1

ytH(xt)
∥∥∥∥∥
σ

− c ·
∥∥∥∥∥
n∑
t=1
M(xt)

∥∥∥∥∥
1
2

σ

.

In fact, the Hermitian dilation has a symmetric spectrum, in the sense that λ is an eigenvalue
of H(X) if and only if −λ is an eigenvalue. This allows us to simplify to

V (y1x1, . . . , ynxn) = λmax

(
n∑
t=1

ytH(xt)
)
− c · λmax

(
n∑
t=1
M(xt)

) 1
2

.

To make finding a Burkholder function easier, we move to a relaxed version of this V function,
where we introduce a new parameter η > 0 and constant c′ > 0 and define

V (y1x1, . . . , ynxn) = λmax

(
n∑
t=1

ytH(xt)
)
− cη

2 · λmax

(
n∑
t=1
M(xt)

)
− c′

2η .

We will be able to recover the original Khintchine-type guarantee using post-hoc tuning the
parameter η. As a first step-toward finding a Burkholder function, we use sub-additivity of
the maximum eigenvalue to write

V (y1x1, . . . , ynxn) ≤ λmax

(
n∑
t=1

ytH(xt)−
cη

2

n∑
t=1
M(xt)

)
− c′

2η .

Now, using a standard trick in matrix concentration (Tropp, 2012), we move to the “matrix
softmax” or “log-trace-exponential” function:

V (y1x1, . . . , ynxn) ≤ 1
η

log tr exp
(
η

n∑
t=1

ytH(xt)−
cη2

2

n∑
t=1
M(xt)

)
− c′

2η .
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In fact, we claim that this function V is itself a Burkholder function, i.e.

U(x1, . . . , xn) = 1
η

log tr exp
(
η

n∑
t=1
H(xt)−

cη2

2

n∑
t=1
M(xt)

)
− c′

2η .

As a starting point, the preceding argument clearly implies that Property 1o holds. To prove
Property 3o, we invoke Lieb’s Concavity Theorem (Lieb, 1973), which states that for any
fixed A ∈ Sd, the function X 7→ tr exp(A+ logX) is concave over Sd++. Letting x1, . . . , xn
be fixed, and S = η

∑n
t=1H(xt)− cη2

2
∑n
t=1M(xt). We would like to prove that for any x,

E
ε

U(x1, . . . , xn, εx) = E
ε

1
η

log tr exp
(
S + ηεH(x)− cη

2 M(x)
)
− c′

2η ≤
1
η

log tr exp(S)− c′

2η .

This is true via the following reasoning. Applying Lieb’s concavity theorem, we have

E
ε

1
η

log tr exp
(
S + εH(x)− cη

2 M(x)
)
≤ 1
η

log tr exp
(
S + logE

ε
exp(ηεH(x))− cη

2 M(x)
)
.

The standard matrix-valued Rademacher mgf bound (Tropp, 2012) implies that
logEε exp(ηεH(x)) � η

2M(x), and A � B implies treA ≤ treB, so the inequality indeed
holds as long as c ≥ 1.

To conclude, observe that log tr exp(0) = log(d1 + d2), and so to ensure Property 2o it suffices
to set c′ = log(d1 + d2).

The New Algorithm What have we just accomplished? By exhibiting an explicit
Burkholder function, we have just found a new efficient and adaptive algorithm for ma-
trix prediction! Indeed, plugging the new Burkholder function into Theorem 3 has the
following immediate consequence.
Corollary 1 (Burkholder Algorithm for Matrix Prediction). For any fixed η > 0, the
deterministic strategy

ŷt = −τ
η
· E
σ∈{±1}

[
σ log tr exp

(
ησH(xt)− η

t−1∑
s=1

ysH(xs)− 1
2η

2
t∑

s=1
M(xs)

)]
(4.10)

leads to a regret bound of
n∑
t=1
−ŷt · yt ≤ inf

w:‖w‖Σ≤τ

n∑
t=1
−〈w, xt〉 · yt + ητ

2 ·
∥∥∥∥∥
n∑
t=1

xtx
>
t

∥∥∥∥∥
σ

∨
∥∥∥∥∥
n∑
t=1

x>t xt

∥∥∥∥∥
σ

+ τ log(d1 + d2)
η

.

From here it is a simple exercise to show that using a standard doubling trick to tune η
(Cesa-Bianchi and Lugosi, 2006), yields the following stronger guarantee

n∑
t=1
−ŷt · yt ≤ inf

w:‖w‖Σ≤τ

n∑
t=1
−〈w, xt〉 · yt + τ ·

√√√√∥∥∥∥∥
n∑
t=1

xtx>t

∥∥∥∥∥
σ

∨
∥∥∥∥∥
n∑
t=1

x>t xt

∥∥∥∥∥
σ

· 2 log(d1 + d2).

The computation in (4.10) reduces to singular value decomposition (time complexity O(d1d
2
2)

when d1 ≥ d2), and in particular does not scale with the horizon n since the method only
keeps cumulative statistics in memory.
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Interpreting the New Guarantee Recall that for the collaborative filtering problem,
observations are incidence matrices of the form xt = eite

>
jt . Let Nrow = maxi|{t | it = i}| and

Ncol = maxj|{t | jt = j}|; these are the maximum number of times an entry appears in a
given row or column, respectively. Then the bound above is equivalent to

n∑
t=1
−ŷt · yt ≤ inf

w:‖w‖Σ≤τ

n∑
t=1
−〈w, xt〉 · yt + τ ·

√
(Ncol ∨Nrow) · 2 log(d1 + d2).

As discussed earlier, to compete with the set of all rank-r matrices with bounded entries
we can take τ =

√
rd1d2. Defining Regn = ∑n

t=1−ŷt · yt − infw:‖w‖Σ≤τ
∑n
t=1−〈w, xt〉 · yt, the

bound above has the following favorable properties for this parameter choice:

• When entries are drawn from the uniform distribution, Nrow ≈ n/d1 and Ncol ≈ n/d2,
which yields

Regn
n
≈
√
r(d1 ∨ d2)

n
.

This implies that the algorithm will begin to generalize after seeing a constant number
of rows worth of entries, and matches the (optimal) bound derived by Foygel and Srebro
(2011) for the batch statistical learning setting.

• In general, any entry pattern satisfying Nrow ≈ n/d1 and Ncol ≈ n/d2, is sufficient to
obtain the optimistic Regn/n ≈

√
r(d1∨d2)

n
rate. Remarkably, this can happen even

when the entries are chosen adaptively, so long as the condition on Ncol and Nrow is
satisfied once the game ends.

• In the worst case, Regn/n ≈
√
rd1d2/n, which is the minimax rate for the nuclear norm,

and is obtained when the entry distribution is concentrated on a constant-sized subset
of entries.

Beyond giving a new prediction algorithm, the martingale inequality implied by this
Burkholder function is interesting in its own right.
Corollary 2 (Martingale Matrix Square Function Inequality). For all predictable processes
x and all n ≥ 1 it holds that

E
ε

∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
σ

≤

√√√√2E
ε

max
{∥∥∥∥∥

n∑
t=1
xtx>t

∥∥∥∥∥
σ

,

∥∥∥∥∥
n∑
t=1
x>t xt

∥∥∥∥∥
σ

}
log(d1 + d2). (4.11)

In the special case where xt(ε) = xt is a fixed sequence, this square function inequality (4.11)
recovers the Matrix Khintchine inequality (Mackey et al., 2014), including constants. A
similar martingale inequality can be obtained from the Matrix Freedman/Bennett inequalities
of Tropp (2011), but this will depend on almost sure bounds on spectral norms of (xt(ε))t≤n.

4.7 Discussion

The equivalence we have presented is promising both from perspective of designing efficient
algorithms and from the perspective of developing fundamental limits. In the remainder of

42



Part II we strengthen the method as follows

• In Chapter 5, we show how to deduce additional structure of the Burkholder functions
from prediction inequalities of the form φ. This leads to a notion of sufficient statistics
for online learning, and aids in the development of memory-efficient algorithms.

• In Chapter 6, we develop additional probabilistic tools based on maximal inequalities to
directly prove that a given martingale inequality of the form Eε V ≤ 0 holds, particularly
for functions V that arise in learning-theoretic applications.

We made the choice to use the linear loss `(ŷ, y) = −ŷ · y to simplify presentation. This
shortcoming is addressed in the next chapter, and enables the use of more standard learning
losses such as the absolute loss `(ŷ, y) = |ŷ − y| and square loss `(ŷ, y) = (ŷ − y)2. In the
general case, the form of the Burkholder algorithm is not quite as simple as in Theorem 3,
but it is always efficiently computable (in terms of evaluations of U) under mild conditions.

4.8 Chapter Notes

This chapter presents a simplified version of the results in Foster et al. (2018c).

The first work to connect the Burkholder method with online learning is (Foster et al.,
2017b), which focuses on a particular application of Burkholder method related to the UMD
(unconditional martingale difference) property for Banach spaces. This is covered in Chapter 8.
The UMD property was the focus of the first work by Burkholder in which the method was
developed (Burkholder, 1981). The present chapter is based on Foster et al. (2018c), which
showed that the approach can be generalized significantly and used to address the issue of
sufficient statistics for online learning (the focus of Chapter 5).

Initially introduced to give a geometric characterization of the UMD property, the Burkholder
method was developed into its modern form by Burkholder in a series of works throughout
the 1980s (Burkholder, 1981, 1984, 1986, 1991). Since this initial development, the design of
U functions and related objects called Bellman functions has witnessed significant research
activity in areas from harmonic analysis to optimal stopping and stochastic optimal control
(Osekowski, 2012; Nazarov and Treil, 1996; Nazarov et al., 2001). The applicability to
our setting has been limited so far by a focus on bounds that have sharp constants and
are dimension- and horizon-independent. We anticipate that designing new U functions
using perspectives from modern computer science, statistics, and optimization—for example,
exploiting that we are tolerant to logarithmic factors in most settings—will allow us to unlock
the full power of these techniques for learning applications. The “generalized martingale
inequality” formulation we adopt is used throughout various works of Adam Osekowski; see
Osekowski (2012) for a survey.

To the best of our knowledge, the variance-based algorithm we present for for matrix prediction
is the first efficient algorithm of its kind (Arora et al., 2012; Hazan et al., 2012; Shamir and
Shalev-Shwartz, 2014; Allen-Zhu and Li, 2017). Achievability of this bound was first shown in
(Foster et al., 2017b) by appealing to the UMD property for the spectral norm. The explicit

43



construction of a UMD-style Burkholder function for the matrix prediction problem was
noted to be challenging in (Foster et al., 2017b) and indeed does not appear to be known in
the analysis community (Osekowski, 2017). In spite of this, the approach in this chapter uses
the Burkholder method to attain the same results with an explicit (and efficient) Burkholder
function.
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Chapter 5

Generalized Burkholder Method and
Sufficient Statistics

This chapter extends the equivalence developed in the previous chapter along two important
and practical directions:

• First, we highlight substantial additional algorithmic structure exposed by the
Burkholder method. We show that if an adaptive risk bound can be (approximately)
expressed as a function of certain “sufficient statistics” for the data sequence, then
there exists a Burkholder function that only depends on these sufficient statistics, not
the entire data sequence. Following the approach of Chapter 4, this function can be
used algorithmically to achieve the prediction guarantee, but it is only required to keep
the sufficient statistics in memory.

• Second, we extend the techniques to handle the general online supervised learning
setting (Protocol 2). The Burkholder algorithm is extended to efficiently incorporate
non-linear and potentially non-smooth losses, as well as attain fast rates for nicer (e.g.,
strongly convex) losses. In the general case this requires solving a minimax problem
at each step, which is more complicated than the closed form algorithm presented in
Chapter 4, but can be carried out efficiently under mild assumptions.

We show how a many existing adaptive algorithms and prediction inequalities can be cast in
the generalized Burkholder framework, and derive new efficient algorithms including the first
linear-time/space prediction strategy for parameter-free supervised learning (an instance of
“adaptivity to model class structure” in the language of the introduction) with linear classes
and general smooth norms.

5.1 Background

Two of the most appealing features of online learning methods are (a) robustness, due to
the absence of assumptions on the data-generating process, and (b) the ability to efficiently
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incorporate data on the fly. According to this latter desideratum, online methods should
not store all the data observed so far in memory, but instead maintain some “compressed”
representation, sufficient for making online predictions. The focus of this chapter is the study
of such sufficient statistics for online learning, and the design of computationally efficient
methods that employ them.

It is natural to turn to statistics for inspiration: a classical notion of sufficient statistics
(Fisher, 1922) ensures that a statistician can search for methods that work on “compressed”
representations of the data. Sufficient statistics have also been studied in sequential decision
theory (Bahadur, 1954). However, the very notion of sufficiency is inherently tied to the posited
probabilistic model, and the corresponding notion for arbitrary sequences—as postulated by
the above desideratum (a)—is all but obvious.

The current theory of online learning offers little guidance as to what summaries of past data
should be recorded by an online algorithm. For instance, the Exponential Weights algorithm
(Vovk, 1990; Littlestone and Warmuth, 1994) keeps in memory the cumulative losses of
the experts, while the general potential-based forecaster (Cesa-Bianchi and Lugosi, 2006)
updates the cumulative regret of the algorithm with respect to each expert. The methods
from the follow-the-regularized-leader family (also known as dual averaging methods) work
with the sum of gradients of convex functions, while the Online Newton Step (Hazan et al.,
2007) method and the Vovk-Azoury-Warmuth forecaster (Cesa-Bianchi and Lugosi, 2006)
also store the “covariance” matrix of outer products. The well-known adaptive gradient
descent procedure (e.g. (Rakhlin and Sridharan, 2017)) tunes the step size for online gradient
descent according to the cumulative squared norms of gradients, a statistic that appears to
be necessary for achieving the adaptive bound.1

The question of sufficient statistics for online methods appears to be unexplored and poorly
understood, and it will take significant effort to answer it. In this chapter we propose an
approach that appears to be general yet, inevitably, incomplete. We propose a definition that
brings many existing methods under the same umbrella, and allows us to develop new efficient
strategies that have otherwise been out of reach. The key workhorse for our development is
the Burkholder method, following the equivalence framework developed in Chapter 4. The
crucial insight is that the sufficient statistics we start with are reflected in the Burkholder
function and, hence, the Burkholder algorithm is only required to update these compressed
representations of the data.

5.2 Problem Setup and Sufficient Statistics

We follow the Online Supervised Learning setting described in Section 2.3 where, for each
round t = 1, . . . , n, the forecaster observes side information xt ∈ X , makes a prediction
ŷt ∈ Y ⊂ R, observes an outcome yt ∈ Y , and incurs a loss of `(ŷt, yt), where ` : R× R→ R.

1Another example to look out for as the reader proceeds through the thesis is the ZigZag method of
Chapter 8, which keeps track of a sign-transformed sequence of the gradients to achieve the empirical
Rademacher complexity as a regret bound.
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In a general form, the goal of the forecaster is to ensure that

E
[
n∑
t=1

`(ŷt, yt)
]
≤ φ(x1, y1, . . . , xn, yn) (5.1)

for any sequence (x1, y1), . . . , (xn, yn), where the expectation is with respect to forecaster’s
randomization. The choice of φ of course models the problem at hand, and examples in this
chapter focus on regret inequalities of the form

φ(x1, y1, . . . , xn, yn) = min
f∈F

{
n∑
t=1

`(f(xt), yt) + B(f, x1, . . . , xn)
}
, (5.2)

for some class of functions F : X → R and an adaptive regret bound B : F × X n → R.

We assume that φ is uniformly bounded over (X × Y)n. We further assume that ` is convex
and L-Lipschitz in the first argument over Y . We denote the derivative (or a subderivative)
of `(·, y) at ŷ by ∂`(ŷ, y) ∈ [−L,L]. We will abbreviate δt = ∂`(ŷt, yt) when it is clear from
context, but keep in mind that this value depends on the two variables ŷt and yt. We assume
that for any distribution p on Y , arg minŷ∈R Ey∼p `(ŷ, y) ∈ Y , and that Y is compact. We let
∆Y denote the space of all Borel probability measures on Y (more generally, ∆A will denote
the set of Borel probability measures over some set A). Since Y is compact, Prokhorov’s
theorem implies that ∆Y is compact in the weak topology. This enables application of the
minimax theorem (Theorem 1).

Additional notation For any interval [a, b], we define proj[a,b](x) = min{b,max{a, x}}.

5.2.1 Sufficient Statistics

Since there is no probabilistic model for data in the online learning setting, the notion of
“sufficiency” has to be tied to the particular choice of adaptive rate φ. It is then tempting
to define a sufficient statistic as a “compressed” representation which may be used by some
strategy to ensure (5.1). While natural, such a definition does not provide any additional
structure to narrow the search for an algorithm.

The definition we propose is as follows:
Definition 1. Let T be some vector space. A function T : X × Y × [−L,L] → T is an
additive sufficient statistic for φ if there exists V : T → R such that

n∑
t=1

`(ŷt, yt)− φ(x1, y1, . . . , xn, yn) ≤ V

(
n∑
t=1

T(xt, ŷt, ∂`(ŷt, yt))
)

(5.3)

for any sequence x1, ŷ1, y1, . . . , xn, ŷn, yn. We refer to (T, V ) as a sufficient statistic pair.

In Section 5.8, we consider a more general non-additive definition. All examples in this
chapter, however, are already covered by Definition 1, and we will drop the word “additive”
for now. We will also make the mild assumption that there exists (x0, y0) ∈ X × Y such that
T(x0, y0, 0) = 0 ∈ T .
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Example 4 (Prediction with expert advice). Consider φ as in Eq. (5.2) with F as the
set of linear functions f(x) = 〈f, x〉 for f ∈ ∆d, with X = [−1, 1]d, and with non-adaptive
(uniform) rate B := c

√
n log d. Then the left-hand-side of (5.3) can be upper bounded via

linearization of the convex loss by

max
j∈1,...,d

n∑
t=1

∂`(ŷt, yt) · (ŷt − 〈ej, xt〉)− c
√
n log d.

It follows that Rd-valued map T defined by [T(xt, ŷt, δt)]j = δt · (ŷt − 〈ej, xt〉) is a sufficient
statistic.
Example 5 (Adaptive Gradient Descent). Consider φ as in Eq. (5.2) with F as the set
of linear functions f(x) = 〈f, x〉 for f ∈ Bd

2, X = Rd, and adaptive bound B(∇1, . . .∇n) :=
(∑n

t=1 ‖∇t‖2)1/2, where ∇t := δtxt. The left-hand-side of (5.3) is at most

max
f∈Bd2

n∑
t=1

δt · (ŷt − 〈f, xt〉)−
(

n∑
t=1
‖∇t‖2

)1/2

=
n∑
t=1

δt · ŷt +
∥∥∥∥∥
n∑
t=1
∇t

∥∥∥∥∥−
(

n∑
t=1
‖∇t‖2

)1/2

. (5.4)

This implies that T(xt, ŷt, δt) =
(
δtŷt,∇t, ‖∇t‖2

)
∈ R×X × R is a sufficient statistic.

5.3 Burkholder Method for Sufficient Statistics

The notion of sufficient statistic introduced in the previous section will only be useful if we
exhibit a prediction strategy employing this representation. To do so, we introduce extensions
to the Burkholder method and corresponding algorithm developed in Chapter 4.

First, we show that existence of a prediction strategy that guarantees the regret inequality
(5.1) for all sequences can be ensured by checking a martingale inequality involving only the
sufficient statistics. The key tool in proving the lemma is the minimax theorem.

Note that in a slight abuse of notation, we will concatenate the first two arguments of any
sufficient statistic T and write them as zt := (xt, ŷt) going forward.
Lemma 2. Suppose (T, V ) is a sufficient statistic pair for φ. Let δ = (δ1, . . . , δn) be a [−L,L]-
valued martingale difference sequence (i.e. E[δt | Gt−1] = 0, where Gt−1 = σ(δ1, . . . , δt−1)).
Let z = (z1, . . . ,zn) be a sequence of functions zt : [−L,L]t−1 → X × Y, each viewed as
a predictable process with respect to Gt−1. Then a sufficient condition for existence of a
prediction strategy such that (5.1) holds for all sequences (x1, y1), . . . , (xn, yn) is that

E
[
V

(
n∑
t=1

T(zt, δt)
)]
≤ 0 (5.5)

holds for any z and any law of δ. Moreover, when α 7→ V (τ + T(z, α)) is convex for any
z ∈ X × Y , τ ∈ T , it is enough to check (5.5) for δt = εt · 2L, ∀t = 1, . . . , n, where εts are
independent Rademacher random variables.

Lemma 2 follows the results in Section 1.5 and Chapter 4 whereby existence of a strategy
(or, “learnability”) is certified non-constructively by proving a martingale inequality. The
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next lemma provides a key insight into existence of Burkholder functions with additional
“geometric” properties. In particular, the Burkholder function enjoys a stronger version of
the restricted concavity introduced in Chapter 4, in the sense that the function acts only on
the space of sufficient statistics, not the entire data sequence. It is for this reason that we
describe the property as “geometric”. This stronger restricted concavity plays a key role in the
success stories for the Burkholder method in probability, in particular for Pisier’s geometric
characterization of Banach spaces with the martingale type property (Pisier, 1975) and
Burkholder’s geometric characterization of Banach spaces with the unconditional martingale
difference (UMD) property (Burkholder, 1981).
Lemma 3. Let δ = (δ1, . . . , δn) be a [−L,L]-valued martingale difference sequence with joint
law p and let z = (z1, . . . ,zn) be a predictable process (zt : [−L,L]t−1 → X × Y) with
respect to Gt−1 = σ(δ1, . . . , δt−1). The probabilistic inequality

E
[
V

(
n∑
t=1

T(zt, δt)
)]
≤ 0 (5.6)

holds for any n ≥ 1, z, and p if and only if one can find a function U : T → R that satisfies
the following three properties:

1o U(0) ≤ 0.

2o For any τ ∈ T , U(τ) ≥ V (τ).

3o For any τ ∈ T , z ∈ X × Y , and any mean-zero distribution p on [−L,L],

E
α∼p

[U(τ + T(z, α))] ≤ U(τ). (restricted concavity)

Furthermore, if for any τ ∈ T and z ∈ X × Y the mapping α 7→ V (τ + T(z, α)) is convex,
then the condition (5.6) is implied by E [V (∑n

t=1 T(zt, εt · 2L))] ≤ 0, where (ε1, . . . , εn) are
Rademacher random variables. For this new condition, property 3o is replaced by

3′ The mapping α 7→ U(τ + T(z, α)) is convex and:

∀τ ∈ T , z ∈ X × Y , E
ε

U(τ + T(z, ε · 2L)) ≤ U(τ),

where ε is a Rademacher random variable.
Definition 2. We call any function U satsifying the properties 1o, 2o, and 3o/3′ a Burkholder
function for (T, V ).

In plain language, the lemma says that one can prove a certain probabilistic inequality if
and only if there is a deterministic function with certain properties. We remark that the
Burkholder functions guaranteed by the lemma are not unique, and some may be easier to
find than others. We also note that any Burkholder function U for (T, V ) yields another
sufficient statistic pair (T,U) guaranteeing the same adaptive regret bound. The power of
Theorem 3 is to guarantee the existence of a function U satisfying property 3o when the
function V under consideration does not have these properties. This situation, where the
choice of V is “obvious” but the discovery of U requires nontrivial analysis, occurs frequently
when one attempts to design adaptive algorithms for a new task.
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To showcase the power of this lemma, we consider a particular martingale inequality that
gives rise to the geometric notions of strong convexity and smoothness. These geometric
properties are extensively employed in Online Convex Optimization: to instantiate the Mirror
Descent algorithm with a given norm, one needs to exhibit a function that is strongly convex
with respect to a given norm of interest. For example, for the `1 norm a standard choice is the
negative entropy function. The next example shows that for any norm, the optimal strongly
convex function is precisely the dual of the special Burkholder function for a particular
martingale inequality. This example is the focus of Pisier (1975), yet for us it is one point on
the spectrum of sufficient statistics.
Example 6 (Smoothness and Strong Convexity). Assume L = 1 for brevity. Suppose
X = Rd (more generally, we may take X to be a Banach space), equipped with a norm ‖·‖. Let
V : X×R→ R be defined by (x, a) 7→ ‖x‖2−C ·a for C > 0. Take T(xt, ŷt, δt) = (δtxt, ‖xt‖2).
Since α 7→ V (τ + T(xt, ŷt, α)) is convex, it is enough to consider (5.6) for independent
Rademacher random variables. The martingale inequality (5.6) then reads

E

∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
2

− C
n∑
t=1
‖xt‖2

 ≤ 0 (5.7)

for any X -valued predictable process (xt) with respect to the dyadic filtration Ft−1 =
σ(ε1, . . . , εt−1). If (5.7) holds, Theorem 3 guarantees existence of a Burkholder function
U, and property 3′ reads

E
ε

U(τ1 + εx, τ2 + ‖x‖2) ≤ U(τ1, τ2),

for any τ = (τ1, τ2) ∈ X × R and x ∈ X . From the construction of U in the proof of
Theorem 3, with our particular choice of V , one can deduce that U(τ1, τ2) = U(τ1, 0) + τ2.
Hence,

1
2 (U(τ1 + x, 0) + U(τ1 − x, 0))+C ‖x‖2 = 1

2
(
U(τ1 + x,C ‖x‖2) + U(τ1 − x,C ‖x‖2)

)
≤ U(τ1, 0)

and, thus, x 7→ U(x, 0) is smooth with respect to the norm and its dual is strongly convex
with respect to ‖·‖?. In summary, the Burkholder method captures the geometry necessary
for defining Gradient-Descent-style methods, as the dual of U(x, 0) provides the universal
construction for a strongly convex function with respect to a given norm. See Srebro et al.
(2011) for an in-depth treatment of Mirror Descent and universal construction of strongly
convex regularizers.

What should an algorithm designer take away from the developments thus far? Let us provide
a brief summary. One first starts with a desired regret inequality for the online learning
setting, such as (5.1). The next step is to find an upper bound on the regret inequality
that can be expressed in terms of additive sufficient statistics. Lemma 2 and Theorem 3
then guarantee, respectively, that there is a certain martingale inequality that must hold if
the upper bound in terms of sufficient statistics is achievable, and that there must exist a
Burkholder function with certain geometric properties. In the next section we close the loop
by showing that whenever such a Burkholder function can be evaluated efficiently, it yields
an efficient algorithm that only keeps the sufficient statistics in memory.
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Before proceeding, we briefly remark that if the sufficient statistic expansion V also serves
as a lower bound on the regret inequality, then there is a formal sense in which the special
Burkholder function exists if and only if there exists a strategy achieving the original regret
inequality of interest; this is the focus of Section 5.7. In the reverse direction, one may start
with a probabilistic inequality and determine the statistics that should be used to define the
online prediction goal.2

5.4 Generalized Burkholder Algorithm

Example 6 in the previous section already suggests that the Burkholder U functions capture
the “geometry” needed for forming online predictions. Indeed, the method applies to settings
in which more complicated sufficient statistics (beyond the norm of the sum and the sum of
the squared norms) are necessary. We now define an extension of the Burkholder algorithm
from Chapter 4 based on the new concept of Burkholder functions for sufficient statistics.

To define the algorithm, first let ζt−1 = ∑t−1
j=1 T(xj, ŷj, δj) be the cumulative value of the

sufficient statistic computed after t− 1 rounds. Since T is a vector space, ζts are elements of
T , and this is the only information the algorithm stores in memory.

The generalized Burkholder algorithm is defined by the update:

Compute qt = arg min
q∈∆Y

sup
y∈Y

E
ŷ∼q

U
(
ζt−1 + T(xt, ŷ, ∂`(ŷ, y))

)
. Sample ŷt ∼ qt.

(5.8)

Lemma 4. For a sufficient statistic pair (T, V ), if there exists a Burkholder function U
satisfying Properties 1o, 2o, and 3o (or 3′) of Theorem 3, then the Burkholder algorithm (5.8)
obtains the regret bound (5.1) in expectation for all sequences (x1, y1), . . . , (xn, yn).

Proof. To check that the above strategy works, fix a value xt and observe that by the
minimax theorem,3

inf
q∈∆Y

sup
y∈Y

E
ŷ∼q∈∆Y

U (ζt−1 + T(xt, ŷ, ∂`(ŷ, y))) = sup
p∈∆Y

inf
ŷ∈Y

E
y∼p

U (ζt−1 + T(xt, ŷ, ∂`(ŷ, y)))

For any fixed p, let ŷ? := arg minŷ∈Y Ey∼p `(ŷ, y), which implies ∂`(ŷ?, y) is a mean-
zero variable (see the proof of Lemma 2). Taking the worst case value for p
and choosing ŷ? as the learner’s strategy for each p yields an upper bound of
supp∈∆Y Ey∼p U (ζt−1 + T(xt, ŷ?, ∂`(ŷ?, y))), which in turn is upper bounded by

sup
ŷ?∈Y

sup
p∈∆[−L,L] : Eα∼p[α]=0

E
α∼p

U (ζt−1 + T(xt, ŷ?, α))

2This was precisely the approach used to develop a matrix prediction method we present in Section 5.5.4.
3The minimax theorem can be applied because ∆Y is compact; see Section 2.6.

51



by observing that the distribution over ∂`(ŷ?, y) belongs to the set of all zero-mean distribu-
tions supported on [−L,L]. The third property of U now leads to the upper bound,

sup
ŷ?∈Y

sup
p∈∆[−L,L] : Eα∼p[α]=0

E
α∼p

U (ζt−1 + T(xt, ŷ?, α)) ≤ U (ζt−1) .

Applying this argument from t = n down to t = 0 yields the value U(0) ≤ 0.

Implementation When U is convex in ŷ and the set Y is convex, the minimum over
q is achieved at a deterministic strategy, and so the minimization problem simplifies to
arg minŷ∈Y . All of the Burkholder functions we explore in this chapter enjoy this or similar
simplified and efficient representations for the algorithm. These simplifications are detailed in
Section 5.9.1. Even without convexity, the general form for the Burkholder algorithm in (5.8)
can be implemented efficiently via convex programming, assuming only Lipschitz continuity
of U.
Proposition 3. Suppose U is Lipschitz and bounded and can be evaluated in constant time.
Then (5.8) can be implemented approximately so as to achieve the regret inequality (5.1) up
to additive constants in time poly(n).

A precise version of this claim is deferred to Section 5.9.1.

5.5 Examples

5.5.1 ZigZag Algorithm and the UMD Property

Pisier (1975) used martingale techniques to provide a characterization of super-reflexive
Banach spaces as those admitting an equivalent uniformly convex norm. As already described
in Example 6, the essential ingredient of this analysis is a construction of a function U
with the desired restricted concavity property (which turns out to be equivalent to uniform
smoothness) for the martingale inequality (5.7). The corresponding notion in the world of
online learning is that of an adaptive gradient (or mirror) descent.

Burkholder (1981) provided a geometrical characterization of UMD spaces, and a key ingredi-
ent of the approach was to establish existence of (and sometimes to compute in closed form)
the function U with corresponding geometric properties (ζ-convexity, which is equivalent to
“zigzag concavity” (Osekowski, 2012)). To give a teaser for Chapter 8, in the online learning
world the corresponding adaptive regret bound is that of empirical Rademacher averages:

n∑
t=1

`(ŷt, yt)− min
‖w‖≤1

n∑
t=1

`(〈w, xt〉 , yt)− C E
∥∥∥∥∥
n∑
t=1

εtδtxt

∥∥∥∥∥ .
By linearizing the loss, it suffices to use the sufficient statistic T(xt, ŷt, δt) = (δtŷt, δtxt, εtxt)
where (εt) is taken to be a sequence drawn by the algorithm. The corresponding martingale
inequality is

E
[∥∥∥∥∥

n∑
t=1

εtxt(ε)
∥∥∥∥∥
p

− C
∥∥∥∥∥
n∑
t=1

ε′txt(ε)
∥∥∥∥∥
p]
≤ 0, (5.9)
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where the process in the subtracted term is decoupled and p > 1 is arbitrary. We refer the
reader to Chapter 8 for more details.

We would like to emphasize that both smoothness/strong convexity (as in Pisier’s work) and
the UMD property (as in Burkholder’s work) are two distinct notions with distinct sets of
sufficient statistics. Since the fundamental works of Pisier and Burkholder, the so-called
“Burkholder method” has been employed to prove a wide range of martingale inequalities
and discover the corresponding geometric properties of the special function (Osekowski,
2012; Hytönen et al., 2016). Our contribution here is to present a unifying approach for
working with arbitrary sufficient statistics in online learning, and to show that the Burkholder
approach is in fact algorithmic.

5.5.2 AdaGrad and Square Function Inequalities

The Burkholder method can be used to recover efficient algorithms that obtain regret bounds
in the vein of diagonal AdaGrad and full-matrix AdaGrad (Duchi et al., 2011), with optimal
constants.

Define a function Usquare(x, y) : Rd × R+ → R (Osekowski, 2005, 2012) via

Usquare(x, y) =
{
−
√

2y2 − ‖x‖2
2, y ≥ ‖x‖2.

‖x‖2 − 2y, y < ‖x‖2.

Usquare satisfies three properties as in Theorem 3: 1. Usquare(x, y) ≥ ‖x‖2 − 2y, 2.
Usquare(x, ‖x‖2) ≤ 0, and 3. Usquare(x+ d,

√
y2 + ‖d‖2

2) ≤ Usquare(x, y) + 〈∂xUsquare(x, y), d〉.
This function consequently leads to two algorithms in the style of AdaGrad (Duchi et al.,
2011) but with optimal constants, and which we now sketch.

The first regret bound is for `2 classes, as in full-matrix AdaGrad, and has the form
n∑
t=1

`(ŷt, yt)− min
‖w‖2≤1

n∑
t=1

`(〈w, xt〉 , yt)− 2L
√√√√ n∑
t=1
‖xt‖2

2 ≤ 0.

The associated martingale inequality is E ‖∑n
t=1 εtxt(ε)‖2 ≤ 2E

√∑n
t=1‖xt(ε)‖

2
2, which was

shown to be optimal in Osekowski (2005).4 The second regret bound is for `∞ classes, as in
diagonal AdaGrad, and has the form

n∑
t=1

`(ŷt, yt)− min
‖w‖∞≤1

n∑
t=1

`(〈w, xt〉 , yt)− 2L

∥∥∥∥∥∥
(

n∑
t=1

x2
t

)1/2
∥∥∥∥∥∥

1

≤ 0,

where x2
t denotes the element-wise square. This is obtained by applying the scalar version

of Usquare coordinate-wise. The associated martingale inequality is E ‖∑n
t=1 εtxt(ε)‖1 ≤

2E
∥∥∥(∑n

t=1 xt(ε)2)1/2
∥∥∥

1
. Both regret bounds require no prior knowledge of the range of (xt)t≤n,

and have runtime O(d) per step.
4Note that the expectation is outside the square root, so this is stronger than the ubiquitous inequality

E ‖
∑n
t=1 εtxt(ε)‖2 ≤

√
E
∑n
t=1‖xt(ε)‖

2
2.
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5.5.3 Strongly Convex Losses

All of the examples we have presented so far pertain to generic Lipschitz losses, and conse-
quently have regret that grows as

√
n in the worst case. We now show that the Burkholder

method can also provide logarithmic regret regret (Cesa-Bianchi and Lugosi, 2006; Hazan
et al., 2007) for strongly convex losses. We take F =

{
x 7→ 〈w, x〉 | w ∈ Rd

}
and equip this

space with a regularizer Φ(w) = 1
2‖w‖

2
2. We assume that the loss `(ŷ, y) is ρ-strongly convex

and L-Lipschitz. We adopt the shorthand zt = (xt,−ŷt), and our goal is to obtain a data-
and comparator-dependent regret bound of the form

Bλ(w; z1, . . . , zn) = Φ((w, 1)) + c log det
(
ρ

n∑
t=1

ztz
>
t + λI

)
− c log det(λI).

for some c > 0. Here we recover the classical Vovk-Azoury-Warmuth-type bound for strongly
convex losses (Vovk, 1998; Azoury and Warmuth, 2001). This example is important because
it shows that the Burkholder method in full generality can both obtain fast rates for curved
losses and obtain bounds that jointly depend on the comparator and data. The right sufficient
statistic for this problem should be familiar: In addition to storing a sum of gradients, we
also store the empirical covariance ∑n

t=1 ztz
>
t . We introduce one last piece of notation: For

A � 0, ΨA(w) = 1
2〈w,Aw〉.

Proposition 4. The sufficient statistic T(xt, ŷt, δt) =
(
δtzt, ztz

>
t

)
∈ Rd+1 × Sd+1

+ and

V (x,A) = Ψ?
ρA+λI(x)− c log(det(ρA+ λI)/ det(λI)) (5.10)

forms a sufficient statistic pair for the adaptive regret bound Bλ.
Theorem 4. For the sufficient statistic pair (T, V ) in Proposition 4, U = V is a Burkholder
function whenever c ≥ L2/ρ.

Note that for this setting the natural choice for V turned out to be a Burkholder function
itself. The final runtime for the algorithm is O(d2) per step.

5.5.4 Revisiting Matrix Prediction

In this section we take another look at the matrix prediction example from Chapter 4 through
the lens of sufficient statistics. Our goal is to achieve a regret inequality as in (5.2) with a class
F = {x 7→ 〈w, x〉 | w ∈ W}, where W =

{
w ∈ Rd1×d2 | ‖w‖Σ ≤ τ

}
. Here 〈A,B〉 = tr(AB>)

is the standard matrix inner product and ‖·‖Σ denotes the nuclear norm. We also let ‖·‖σ
denote the spectral norm. The loss ` is assumed to be L-Lipschitz and regret against a matrix
w ∈ W is given by Regn(w) := ∑n

t=1 `(ŷt, yt)− `(〈w, xt〉, yt).

Following the approach in Chapter 4, the desired regret bound takes the form

Bη(x1, . . . , xn) = ητL2

2

∥∥∥∥∥
n∑
t=1
M(xt)

∥∥∥∥∥
σ

+ c

η
, (5.11)
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for some fixed η > 0 and constant c > 0. The reader might already guess that ∑n
t=1M(xt)

should be part of the sufficient statistic. This indeed the case. The sufficient statistic takes
values in T = R × Sd1+d2 × Sd1+d2

+ and incorporates the matrix variance terms M(xt) as
follows.
Proposition 5. The pair (T, V ) defined via T(xt, ŷt, δt) = (δt · ŷt, δt · H(xt),M(xt)) ∈
R× Sd1+d2 × Sd1+d2

+ and

V (a,H,M) = a+ τλ1
(
H − 1

2ηL
2M

)
− c

η
, (5.12)

form a sufficient statistic pair for the adaptive regret bound Bη.

The construction for the Burkholder function from Chapter 4 can be summarized in the
language of sufficient statistics as follows.
Theorem 5. Define U : R× Sd1+d2 × Sd1+d2

+ → R via

U(a,H,M) = a+ τ

η
log tr exp

(
ηH − 1

2η
2L2M

)
− c

η
.

Then U is a Burkholder function, for the pair (T, V ) in (5.12) when c ≥ τ log(d1 + d2).

This more general formulation allows us to extend the matrix prediction strategy to arbitrary
Lipschitz losses. The algorithm granted by the Burkholder algorithm is still quite simple due
to extra convexity properties of U; see Section 5.9.1.
Corollary 3 (Matrix prediction algorithm). Suppose that Y = [−B,B] for some B > 0.
Then the deterministic strategy

ŷt = proj[−B,B]

(
− τ

Lη
E

σ∈{±1}

[
σ log tr exp

(
ησLH(xt) + η

t−1∑
s=1

δsH(xs)− 1
2η

2L2
t∑

s=1
M(xs)

)])
(5.13)

leads to a regret bound of
n∑
t=1

`(ŷt, yt)− inf
w∈W

n∑
t=1

`(〈w, xt〉, yt) ≤ 1
2ηL

2τ

∥∥∥∥∥
n∑
t=1
M(xt)

∥∥∥∥∥
σ

+ τ log(d1 + d2)
η

.

The computation in (5.13) has time complexity O(d1d
2
2) when d1 ≥ d2, and does not scale

with the horizon n since the method only keeps the cumulative sufficient statistics in memory.

5.6 Time-Dependent Burkholder Functions

In this section we generalize the Burkholder method to allow for a sequence of time-dependent
Burkholder functions that satisfy the properties of Theorem 3, rather than using a single
Burkholder function. This extra generality is useful when we develop adaptive regret bounds
that only depend on the data sequence x1:n,y1:n through the length n. As an application, we
give a new family of adaptive algorithms for the problem of parameter-free online learning
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(McMahan and Orabona, 2014). This type of adaptivity falls under the umbrella of model-
based adaptivity introduced in Chapter 2.

The setup is as follows: We equip the subset X ⊆ Rd with a norm ‖·‖ and assume that
‖xt‖ ≤ 1 for all t.5 Recall that ‖·‖? will denote the dual norm. Rather than constraining
the benchmark class to a compact set, we set W = Rd and set F = {x 7→ 〈w, x〉 | w ∈ W}.
We assume smoothness of the norm: letting Ψ(x) = 1

2‖x‖
2, it holds that6 Ψ(x + y) ≤

Ψ(x) + 〈∇Ψ(x), y〉+ β
2‖y‖

2.

To ease notational burden, we will assume the loss is 1-Lipschitz in this section. We will
efficiently obtain a regret bound of the form

Regn(w) ≤ B(w) := ‖w‖?

√
2βn log

(√
βn‖w‖? + 1

)
+ 1 ∀w ∈ Rd (5.14)

for any such smooth norm. We begin by stating a sufficient statistic representation for the
problem. This is based on a familiar potential which has appeared in previous works on
parameter-free online learning (e.g. (McMahan and Orabona, 2014)) in Hilbert spaces; we
extend it to any smooth norm, then use it in the Burkholder method to provide the first
linear time/linear space algorithm for parameter-free learning with general smooth norms in
online supervised learning.
Proposition 6. Suppose we are interested in an adaptive regret bound of

B(w) = ‖w‖?

√√√√2an log
(√

an‖w‖?
γ

+ 1
)

+ c

for constants a, γ, c > 0. Then T(xt, ŷt, δt) = (δt · ŷt, δt · xt) ∈ R×X and the function

V (b, x) = b+ γ exp
(
‖x‖2

2an

)
− c, (5.15)

yield a sufficient statistic pair for the regret bound B.

Because the regret bound we provide is not horizon independent unlike previous examples, it
will be convenient to allow time-indexed Burkholder functions (Ut)t≤n. This indexing is of
purely notational convenience, as time-dependent Burkholder functions fit squarely into the
algorithmic framework of Lemma 4 by enlarging X to X × [n]. Nonetheless, we recap the
analogous properties for time-dependent Burkholder functions in the proof of the following
theorem.
Theorem 6. Suppose c = 1, a = β, and γ = 1/

√
n in (5.15). Then

Ut(b, x) := b+ 1√
n

exp
(
‖x‖2

2βt + 1
2

n∑
s=t+1

1
s

)
− 1,

is a family of time-varying Burkholder functions satisfying 1o, 2o, and 3′.
5The result extends verbatim to the general Banach space case; this is only to simplify presentation.
6Cf. Section 1.7. Our analysis extends to the general case where we instead have 1

2‖x‖
2 ≤ Ψ(x) for some

Ψ 6= 1
2‖·‖

2 and the same smoothness inequality holds, which is needed for settings such as `1/`∞.
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This Burkholder function immediately yields both a prediction strategy achieving (5.14) and
a simple probabilistic martingale inequality. We will now state them both. Because (Ut)t≤n
satisfy additional convexity properties, the strategy is especially efficient (per Section 5.9.1
and Lemma 6).
Corollary 4. Suppose that Y = [−B,B] for some B > 0. Then the deterministic prediction
strategy

ŷt = proj[−B,B]

− 1√
n

E
σ∈{±1}

σ · exp


∥∥∥∑t−1

s=1 δsxs + σxt
∥∥∥2

2βt + 1
2

n∑
s=t+1

1
s





leads to a regret bound of

n∑
t=1

`(ŷt, yt)−
n∑
t=1

`(〈w, xt〉, yt) ≤ ‖w‖?

√
2βn log

(√
βn‖w‖? + 1

)
+ 1 ∀w ∈ Rd.

The Burkholder function family stated above and Theorem 3 certify that supE[V ] ≤ 0.
One special case of this martingale inequality is the following mgf bound for vector-valued
martingales under smooth norms.
Corollary 5. Let xt(ε) := xt(ε1, . . . , εt−1) be adapted to the filtration Ft−1 = σ(ε1, . . . , εt−1)
for Rademacher random variables ε1, . . . , εn, and let ‖xt‖ ≤ 1 almost surely, where ‖·‖ is a
β-smooth norm. Then it holds that

E
ε

exp
(
‖∑n

t=1 εtxt(ε)‖
2

2βn

)
≤
√
n.

Essentially all other approaches to parameter-free online learning (McMahan and Abernethy,
2013; McMahan and Orabona, 2014; Orabona, 2014; Orabona and Pál, 2016; Cutkosky and
Boahen, 2016, 2017) only provide regret bounds of the form (5.14) in the special case where
‖·‖ is a Hilbert space. The only exception is Chapter 9, which gives an algorithm for smooth
norms ‖·‖, but has time poly(n) per step (the results of Chapter 9 are substantially more
general than the smooth norm case, however.). The independent work of (Cutkosky and
Orabona, 2018) simultaneously provided an algorithm with a similar regret guarantee and
computational efficiency to Theorem 6. Our Burkholder-based algorithm has running time
O(d) per step and only O(d) memory.7 The key ingredient to achieving this improvement
was to examine a known potential through the lens of the Burkholder method.

5.7 Necessary Conditions

In Chapter 4 we saw that martingale inequalities provide necessary conditions for achievability
of adaptive rates. In this section we go further and state a simple—yet powerful—result that

7Technically our algorithm only applies to the online supervised learning setting, whereas the algorithm of
Foster et al. (2017a) applies to the OCO setting.
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characterizes when existence of a Burkholder function for a sufficient statistic representation
pair (T, V ) is not only sufficient, but necessary to obtain a particular regret bound. The fas-
cinating implication here is that an algorithm that operates on the compressed representation
(T, V ) must exist whenever learning is possible.
Proposition 7. Let δ = (δ1, . . . , δn) be a [−L,L]-valued martingale difference sequence
over filtration Ft−1 = σ(δ1, . . . , δt−1) and let z = (z1, . . . ,zn) be a sequence of functions
zt : [−L,L]t−1 → X ×Y , each viewed as a predictable process with respect to Ft−1. Suppose
for every such (δ, z) pair there exists a randomized adversary strategy (xt, yt) that guarantees,
for every learner strategy (ŷt)t≤n,

E sup
f∈F

[
n∑
t=1

`(ŷt, yt)− `(f(xt), yt)− B(f ;x1, . . . , xn)
]
≥ E

[
V

(
n∑
t=1

T(zt, δt)
)]

. (5.16)

Then, if there exists a strategy (ŷt)t≤n that achieves the regret bound B(f ;x1:n), this implies
that

sup
δ,z

E
[
V

(
n∑
t=1

T(zt, δt)
)]
≤ 0.8

Consequently, the regret bound B(f ;x1:n) is achievable only if there exists a Burkholder
function U : T → R that satisfies properties 1o/2o/3oof Theorem 3.

When α 7→ V (τ +T(z, α)) is convex for any z ∈ X ×Y , τ ∈ T , we only require the preceeding
inequalities to hold for δt = εt · L, ∀t = 1, . . . , n, where εts are independent Rademacher
random variables. In this case achievability of the regret bound B(f ;x1:n) only implies
existence of a Burkholder function U satisfying property 3′, not 3o.

Linear Classes At first glance the conditions of Proposition 7 may seem fairly restrictive,
but it is fairly straightforward to instantiate for all the examples in this chapter. Consider
the following linear setting: Take X ⊆ Rd, Y arbitrary, and let F be a linear class of the form
{x 7→ 〈w, x〉 | w ∈ W}, where supx∈X ,w∈W〈w, x〉 ≤ 1 and W is symmetric. Pick an arbitrary
vector space T , let T : X → T be an any featurization of the input space, and let F : T → R
be an arbitrary function. Our goal will be to achieve a regret bound of the form

n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt) ≤ B(x1:n) := F

(
n∑
t=1

T(xt)
)
. (5.17)

Let us first consider a natural choice of V for the upper bound in this setting. Linearizing
and using symmetry of W , we have
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)− B(x1:n) ≤
n∑
t=1

ŷt · δt + sup
w∈W

〈
w,

n∑
t=1

δtxt

〉
− F

(
n∑
t=1

T(xt)
)
.

This means that if we choose a sufficient statistic T : (xt, ŷt, δt) 7→ (ŷtδt, xtδt,T(xt)) ∈
R× Rd × T and choose V (a, x, τ) = a+ supw∈W〈w, x〉 − F (τ), then it holds that

n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)− B(x1:n) ≤ V

(
n∑
t=1

T(xt, ŷt, δt)
)
.

8In the more general case, if (5.16) holds up to additive slack ∆, the corresponding condition is supE[V ] ≤
∆.
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Noting that α 7→ V (τ + T(x, ŷ, α)) is convex, Lemma 2 implies that a sufficient condition to
achieve the regret bound for any convex 1-Lipschitz loss is that

sup
z

E
ε

[
V

(
n∑
t=1

T(zt, εt)
)]
≤ 0, (5.18)

where z is any X × Y-valued predictable process with respect to the Rademacher sequence
ε1, . . . , εn.

By specializing to the absolute loss `(ŷ, y) = |ŷ − y| and choosing an adversary that plays yt
to be Rademacher random variables and xt to be any predictable sequence, it can be shown
that (5.18) is also necessary; this is proven formally in Section 5.10. As a corollary, we derive
the following result.
Proposition 8. There exists a Burkholder function U for the pair (T, V ) if and only if the
regret bound (5.17) is achievable.

Consider the matrix prediction setting of Section 5.5.4 for the special case of L = 1 and
r = 1. This setting fits into the linear class framework above by taking W to be the nuclear
norm ball in Rd1×d2 and setting T(X) =M(X) for any matrix X ∈ Rd1×d2 . For this setting
Proposition 8 implies the following equivalence.
Example 7 (Matrix Prediction). The following are equivalent:

1. The regret bound
n∑
t=1

`(ŷt, yt)− inf
w : ‖w‖Σ≤1

n∑
t=1

`(〈w, xt〉, yt) ≤
η

2

∥∥∥∥∥
n∑
t=1
M(xt)

∥∥∥∥∥
σ

+ c

η

is achievable.

2. The martingale inequality

E
ε

∥∥∥∥∥
n∑
t=1

εtxt(ε)
∥∥∥∥∥
σ

≤ η

2 E
ε

∥∥∥∥∥
n∑
t=1
M(xt(ε))

∥∥∥∥∥
σ

+ c

η

holds for all Rd1×d2-valued predictable processes x.

3. There exists a Burkholder function for the sufficient statistic pair (T, V ) in (5.18).

5.8 Discussion

The core techniques developed in this chapter suggest a number of fascinating future directions
which we hope will lead to a deeper understanding of online prediction and adaptive learning.

Finding sufficient statistics We gave multiple examples of Burkholder function construc-
tions and sufficient statistics. If one wishes to find sufficient statistics for an adaptive bound
A of interest, a basic rule of thumb is to consider a single input instance (instead of all n
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data points) and determine—say—a polynomial expansion or expansion in another basis for
the terms in Regn −A involving the instance. This gives a coarse sketch of which statistics
are necessary.

As an example, take the standard square loss with linear predictors as the benchmark class
and suppose we are interested in a non-adaptive bound. Following the heuristic above,
we need to find an expansion for terms of the form “(ŷ − y)2 − (〈w, x〉 − y)2 − constant”.
Expanding this expression out, we find that ŷ2, y · x and xx> are all required to write the
expression explicitly. In fact, for this square loss example, the weighted sum of the xts and
the sum of the outer products ∑t xtx

>
t turn out to be sufficient statistics as well.

For the examples in this chapter, we exclusively considered benchmark classes F that were
linear, which appears to have made the search for sufficient statistics easier. However, even
when one considers a class F of non-linear functions, the approach of trying to expand the
desired regret inequality (which now involves nonlinear f ∈ F) around a given instance x in
terms of some basis may still help to obtain an adequate sufficient statistics. Furthermore,
one may enlarge the class F to make the sufficient statistic search easier. For instance, if we
want to learn the class of boolean decision trees of depth d, we can exploit that the class can
be represented by polynomials of degree d by using the discrete Fourier coefficients of the
input instances up to degree d as a sufficient statistic. In summary, for non-linear classes one
may still search for sufficient statistics and Burkholder functions by expressing nonlinearities
(approximately) via linear combinations of higher-order terms.

Toward plug-and-play online learning A natural next step is to automatize the search
for sufficient statistics and Burkholder functions. Suppose that the sufficient statistic pair
(T, V ) is fixed and all that remains is to find a Burkholder function U. If V can be written as
a polynomial of degree over sufficient statistic space T , a natural approach is to restrict the
search to Burkholder functions U that are themselves polynomials and relax the inequalities
1o/2o/3o to sum-of-squares constraints (Barak and Steurer, 2014). We can then jointly search
for a function U and a degree-d sum-of-squares proof that this function satisfies the three
properties in polynomial time once the degree of U is fixed. As a specific example, the
problem of finding the zig-zag concave Burkholder function for `p norms explored in Foster
et al. (2017b) has a sufficient statistic V that is a polynomial of degree p when p ≥ 2 is an
integer.

This approach is sound in that it will never incorrectly return a function U that does not
satisfy the three properties, but may not be complete a-priori. An interesting direction is
therefore to explore whether there are conditions under which this system can indeed be
made complete.

Generalized/non-additive sufficient statistics The restriction in Definition 1 that
sufficient statistics combine additively can be relaxed. A more general form is as follows.
First, define a representation space T . The function T now takes the form:

T : X × Y × [−L,L]× T → T .
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The restricted concavity condition for U under this definition becomes

∀z, τ : sup
E[α]=0

E
α

U(T(z, α, τ)) ≤ U(τ).

Properties 1o and 2o of Theorem 3 remain the same. This generalized notion of a sufficient
statistic allows us to move beyond additive updates—T can multiply z with elements of
T , for example—but still restricts storage to the space T and is fully compatible with the
Burkholder method and general algorithm framework. The generalizations of the equivalence
theorem (Theorem 3) and the Burkholder algorithm (Lemma 4) for this notion of sufficient
statistic hold as well.

5.9 Additional Results

5.9.1 Burkholder Algorithm Implementation

Here we show how the generalized Burkholder method can generically be implemented in
polynomial time under mild assumptions on the function U.

Generic Implementation

In this section we assume that Y = [−B,B] for B > 0 for simplicity. The only assumption
we make on the form of U is Lipschitzness and boundedness.
Assumption 1. The are constants Kt and Ht such that the mapping

ŷ 7→ U
(
ζt−1 + T(xt, ŷ, ∂`(ŷ, yt))

)
is Kt-Lipschitz and bounded in magnitude by Ht for any yt ∈ Y, xt ∈ X , and ζt−1 of the
form ζt = ∑t

s=1 T(xs, ŷs, ∂(ŷs, ys)).

Consider the following strategy:

• Fix precision ε1 > 0 and set N = d2B/ε1e.

• Define control points zi = min{−B + ε1 · i, B} for 0 ≤ i ≤ N .

• Let µ̂t be a solution to the convex program

min
µ∈∆N

sup
y∈Y

N∑
i=1

µiU
(
ζt−1 + T(xt, zi, ∂`(zi, y))

)
(5.19)

up to additive precision ε2.

• Sample ŷt ∼ µ̂t.
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Proposition 9. Given a Burkholder function U, the strategy above guarantees

E
[
n∑
t=1

`(ŷt, yt)
]
− φ(x1, y1, . . . , xn, yn) ≤ ε1

n∑
t=1

Kt + ε2n.

That is, the regret inequality (5.1) is obtained up to additive slack controlled by ε1 and ε2.

Before proving the theorem, let us discuss the computational prospects of implementing
this strategy. First, suppose Kt = K and Ht = H ∀t ≤ n. To obtain the regret inequality
up to constant error it suffices to take ε1 = 1/Kn and ε2 = 1/n. In this case, we have
N = O(BKn).

Now we must approximately solve (5.19), which is a standard finite-dimensional convex
non-smooth optimization problem. There are many possible solvers; we will choose Mirror
Descent (e.g. (Nemirovski et al., 1983; Nesterov, 1998; Ben-Tal and Nemirovski, 2001))
for simplicity. Let G(µ) = supy∈Y

∑N
i=1 µiU

(
ζt−1 + T(xt, zi, ∂`(zi, y))

)
. Our constraint set

is `1-bounded, and the boundedness assumption on U implies that G is H-Lipschitz with
respect to the `∞ norm. In this case, Mirror Descent with the entropic regularizer (a.k.a.
multiplicative weights) guarantees an ε-approximate minimizer for G(µ) after O(H log(N)/ε2)
update steps, each of which requires one evaluation of the subgradient of this function.

Evaluating the subgradient of G(µ) requires computing a supremum over y ∈ Y . If U
(
ζt−1 +

T(xt, zi, ∂`(zi, y))
)

is convex with respect to y, then the supremum is obtained in {±B} and
so can be checked in time O(N). In this case, since each Mirror Descent update takes time
O(N), the total complexity of the algorithm is O(BHKn3 log(BKn)).

If the supremum over y ∈ Y does not have a closed form, we can compute an approximate
subgradient by taking a grid over the range [−B,B] with spacing ε′ and computing the
arg max over this grid by brute force. If a O(ε)-precision solution to the convex program is
required, then it suffices to set ε′ = ε/K and use the approximate subgradients in the Mirror
Descent scheme above. The approximate subgradient computation time is O(KN/ε) in this
case, since we evaluate ∑N

i=1 µiU
(
ζt−1 + T(xt, zi, ∂`(zi, y))

)
once per candiate y. The final

time complexity is then O(BHK2n4 log(BKn)).

Lastly, we remark that if we replace Mirror Descent with Mirror Prox for saddle points
(Nemirovski, 2004), the dependence on n in running time for the two cases above can be
improved to O(n2) and O(n3) respectively.

The runtime can improved further if a regret bound of order O(
√
n) is sufficient, as this

requires less precision.

Proof of Proposition 9. To begin, observe that since µ̂t is an approximate solution to
(5.19), it holds that

sup
y∈Y

N∑
i=1

µ̂iU
(
ζt−1 + T(xt, zi, ∂`(zi, yt))

)
≤ inf

µ∈∆N

sup
y∈Y

N∑
i=1

µiU
(
ζt−1 + T(xt, zi, ∂`(zi, yt))

)
+ ε2.
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The remainder of the proof will show that the right-hand-side above can be bounded as

inf
µ∈∆N

sup
y∈Y

N∑
i=1

µiU
(
ζt−1 + T(xt, zi, ∂`(zi, yt))

)
≤ inf

q∈∆Y
sup
y∈Y

E
ŷ∼q

U
(
ζt−1 + T(xt, ŷ, ∂`(ŷ, y))

)
+Ktε1

≤ U(ζt−1) +Ktε1,

where the second inequality follows from property 3o of U and was shown in the proof of
Lemma 4.

The first inequality can be seen as follows. Let q ∈ ∆Y and y ∈ Y be fixed. Let F (z) :=
U(ζt−1,T(xt, z, ∂`(z, y))). Since q is a Borel probability measure and F is continuous and
bounded, F is integrable with respect to q:

E
ŷ∼q

U(ζt−1,T(xt, ŷ, ∂`(ŷ, y))) =
∫

[−B,B]
F (z)dq(z).

Define I1 = [z0, z1] and Ii = (zi−1, zi] for 2 ≤ N . Then {Ii} form a partition of [−B,B] and
the integral can be approximated as

∫
[−B,B]

F (z)dq(z) =
N∑
i=1

∫
Ii
F (z)dq(z)

≥
N∑
i=1

∫
Ii
F (zi)dq(z)−

N∑
i=1

∫
Ii
|F (zi)− F (z)|dq(z)

=
N∑
i=1

q(Ii)F (zi)−
N∑
i=1

∫
Ii
|F (zi)− F (z)|dq(z)

≥
N∑
i=1

q(Ii)F (zi)−
N∑
i=1

∫
Ii
Ktε1dq(z)

=
N∑
i=1

q(Ii)F (zi)−Ktε1

N∑
i=1

q(Ii)

=
N∑
i=1

q(Ii)F (zi)−Ktε1.

Since this holds for any q ∈ ∆Y and y ∈ Y , we have

inf
q∈∆Y

sup
y∈Y

E
ŷ∼q

U
(
ζt−1 + T(xt, ŷ, ∂`(ŷ, y))

)

≥ inf
q∈∆Y

sup
y∈Y

n∑
i=1

q(Ii)U
(
ζt−1 + T(xt, zi, ∂`(zi, y))

)
−Ktε1

= inf
µ∈∆N

sup
y∈Y

n∑
i=1

µiU
(
ζt−1 + T(xt, zi, ∂`(zi, y))

)
−Ktε1.
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Faster Implementation under Specific Structure

In the remainder of this section we show how to implement the Burkholder algorithm for
certain special cases that enable admit especially simple strategies.
Lemma 5. Suppose that the map

ŷ 7→ U(τ + T((x, ŷ), ∂(ŷ, y)))

is convex for all y. Then the strategy

ŷt = arg min
ŷ∈Y

sup
y∈Y

U

t−1∑
j=1

ζt−1 + T(xt, ŷ, ∂`(ŷ, y))
 (5.20)

achieves the value of the game in Lemma 4.

Proof of Lemma 5. This follows by reduction to the general case:

inf
ŷ∈Y

sup
y∈Y

U (ζt−1 + T(xt, ŷ, ∂`(ŷ, y))) = inf
q∈∆Y

sup
y∈Y

U
(
ζt−1 + T(xt, E

ŷ∼q
[ŷ], ∂`( E

ŷ∼q
[ŷ], y))

)
≤ inf

q∈∆Y
sup
y∈Y

E
ŷ∼q

U (ζt−1 + T(xt, ŷ, ∂`(ŷ, y))) .

The strategy in (5.20) is the minimax strategy for second expression above. The final
expression is precisely the value of the Burkholder algorithm, which is controlled when U is
a Burkholder function via Lemma 4.
Lemma 6. Suppose that Y = [−B,B] for some B > 0. Further suppose that we can write

U(τ + T((x, ŷ), δ)) = ŷ · δ + F (τ, x, δ),

where δ 7→ F (τ, x, δ) is convex for all τ, x. Then the prediction strategy

ŷt = proj[−B,B]

(
− 1
L

E
σ∈{±1}

[σF (ζt−1, xt, Lσ)]
)
, (5.21)

achieves the value of the game in Lemma 4.

Proof of Lemma 6. Let ỹt denote the unprojected version of ŷt:

ỹt = − 1
L

E
σ∈{±1}

[σF (ζt−1, xt, Lσ)].

We prove the lemma by inducting backwards. Let t ∈ [n] be fixed. We first claim that

sup
y∈Y

U (ζt−1 + T(xt, ŷt, ∂`(ŷt, y))) = sup
y∈Y

[ŷt · ∂`(ŷt, y) + F (ζt−1, xt, ∂`(ŷt, y))]

≤ sup
y∈Y

[ỹt · ∂`(ŷt, y) + F (ζt−1, xt, ∂`(ŷt, y))].
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This holds by the assumption that arg minŷ∈R `(ŷ, y) is obtained in [−B,B] for any y. The
assumption implies that for any y, ∂`(ŷ, y) ≥ 0 for ŷ ≥ B and ∂`(ŷ, y) ≤ 0 for ŷ ≤ −B. If
ŷt 6= ỹt, then either ŷt = B and ỹt > B, so that ∂`(ŷt, y)ŷt ≤ ∂`(ŷt, y)ỹt, or similarly ŷt = −B
and ỹt < −B, which also implies ∂`(ŷt, y)ŷt ≤ ∂`(ŷt, y)ỹt.

Now, by the convexity assumption of the lemma, it holds that

sup
y∈Y

[ỹt · ∂`(ŷt, y) + F (ζt−1, xt, ∂`(ŷt, y))] ≤ sup
δ∈[−L,L]

[ỹt · δ + F (ζt−1, xt, δ)]

= max
σ∈{±1}

[ỹt · Lσ + F (ζt−1, xt, Lσ)].

The choice of ỹt guarantees that ỹt ·L·(1)+F (ζt−1, xt, L·(1)) = ỹt ·L·(−1)+F (ζt−1, xt, L·(−1));
this can be seen by rearranging this equality and solving for ỹt. This means that we can take
σ = 1 to obtain the maximum in the expression above. Substituting in the value of ỹt then
yields

max
σ∈{±1}

[ỹt · Lσ + F (ζt−1, xt, Lσ)] = ỹt · L · (1) + F (ζt−1, xt, L · (1)) = E
σ∈{±1}

[F (ζt−1, xt, σL)].

Finally, we use property 3′ of U and the explicit form for U assumed in the lemma statement
to proceed back to time t− 1:

E
σ∈{±1}

[F (ζt−1, xt, σL)] = E
σ∈{±1}

[ŷtσL+ F (ζt−1, xt, σL)]

= E
σ∈{±1}

U(ζt−1 + T((xt, ŷt), σL))

≤ U(ζt−1).

5.9.2 Algebra of Burkholder Functions

This section contains some additional structural results about Burkholder functions that may
be useful for algorithm designers.
Proposition 10. The following statements are true:

1. Given a Burkholder function U, if we define the Xt = U(∑t
j=1 T(zj, δj)), then for

any real-valued martingale difference sequence δts and predictable zts, (Xt)t≥0 is a
supermartingale with E[X0] ≤ 0.

2. Any convex combination of Burkholder functions is a Burkholder function.

3. The minimum of a family of Burkholder functions is a Burkholder function.

4. Suppose we have a finite set A that indexes a family of functions Va : T → R, each of
which belongs to a sufficient statistic pair (T, Va) for some regret inequality of interest,
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and suppose each Va has a corresponding Burkholder function Ua. Then the following
probabilistic inequality is true:

E
[
max
a∈A

{
Va

(
n∑
t=1

T(zt, δt)
)
− ηnC[a]

}]
≤ 1
η

log |A|,

where C[a] = supτ,z,α(Ua(τ +T(z, α))−Ua(τ))2. Note that C ∈ RA may be thought as
a sufficient statistic, though it is fixed and does not depend on instances. Furthermore,
a Burkholder function U : T × RA → R that certifies this inequality is:

U(τ, γ) = 1
η

log
(∑
a∈A

exp
(
ηUa(τ)− η2γ[a]

))
− log |A|

η
(5.22)

Proof of Proposition 10. The first statement follows from property 3o of the Burkholder
function U, which immediately implies that it is a supermartingale. The second statement
is trivial. To prove the third statement it suffices to verify property 3o, which holds due to
concavity of the minimum.

We now prove the fourth statement. Given a family of Burkholder functions {Ua}a∈A, define
a new Burkholder function U : T × RA → R as:

U(τ, γ) = 1
η

log
(∑
a∈A

exp
(
ηUa(τ)− η2γ[a]

))
− log |A|

η
.

whose sufficient statistics are the original sufficient statistic of the family of Vas along with
an additional |A|-dimensional real vector, for which one coordinate per a ∈ A will be used to
represent C[a] = supτ,z,α(Ua(τ + T(z, α))−Ua(τ))2 (note that this is a vacuous statistic as
it is constant for each instance). Property 3o for U holds as follows:

E
α
U ((τ, γ) + (T(z, α), C))

= 1
η
E
α

log
(∑
a∈A

exp
(
ηUa(τ + T(z, α))− η2γ[a]− η2C[a]

))
− log |A|

η

≤ 1
η

log
(∑
a∈A

E
α

exp
(
ηUa(τ + T(z, α))− η2γ[a]− η2C[a]

))
− log |A|

η

= 1
η

log
(∑
a∈A

E
α

exp
(
η (Ua(τ + T(z, α))−Ua(τ)) + ηUa(τ)− η2γ[a]− η2C[a]

))
− log |A|

η
.

Now note that by property 3o of the Burkholder functions {Ua}a∈A, the random variable Xa =
(Ua(τ + T(z, α))−Ua(τ)) is such that Eα[Xa] ≤ 0. Further from our assumption we have
that |Xa|2 ≤ C[a]. Hence, the standard mgf bound implies Eα[exp(ηXa)] ≤ exp(η2C[a]/2).

≤ 1
η

log
(∑
a∈A

exp
(
ηUa(τ) + η2

2 C[a]− η2γ[a]− η2C[a]
))
− log |A|

η

≤ 1
η

log
(∑
a∈A

exp
(
ηUa(τ)− η2γ[a]

))
− log |A|

η
.
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For property 1o it can be seen immediately that U(0) ≤ 0. Property 2o holds via

U(τ, γ) = 1
η

log
(∑
a∈A

exp
(
ηUa(τ)− η2γ[a]

))
− log |A|

η

≥ max
a∈A
{Ua(τ)− ηγ[a]} − log |A|

η
(softmax upper bounds max)

≥ max
a∈A
{Va(τ)− ηγ[a]} − log |A|

η
.

We remark that one uses non-additive sufficient statistics as discussed in Section 5.8, then
one can make the bound implied by the Burkholder function U above more data-dependent
by replacing C[a] with supδ (Ua(τ + T(z, δ))−Ua(τ))2 for each a.

5.10 Detailed Proofs

5.10.1 Proofs from Section 5.3 and Section 5.4

Proof of Lemma 2. As discussed in Chapter 2, existence of a randomized strategy for (5.1)
is equivalent to the following quantity being non-positive:

⟪ sup
xt∈X

inf
qt∈∆Y

sup
yt∈Y

E
ŷt∼qt
⟫
n

t=1

[
n∑
t=1

`(ŷt, yt)− φ(x1, y1, . . . , xn, yn)
]
.

By the minimax theorem, this is equal to

⟪ sup
xt∈X

sup
pt∈∆Y

inf
ŷt∈Y

E
yt∼pt
⟫
n

t=1

[
n∑
t=1

`(ŷt, yt)− φ(x1, y1, . . . , xn, yn)
]
.

Following Section 2.6, we apply the minimax theorem at each time step from t = 1, . . . , n
to switch the order of the learner and the adversary; briefly, our assumptions that Y is a
compact subset of R and that ` and φ are bounded are sufficient. In view of (5.3), the above
quantity is upper bounded by

≤ ⟪ sup
xt∈X

sup
pt∈∆Y

inf
ŷt∈Y

E
yt∼pt
⟫
n

t=1

[
V

(
n∑
t=1

T(xt, ŷt, ∂`(ŷt, yt))
)]
.

Now, for each time t, choose the dual strategy

ŷ∗t := arg min
ŷ∈Y

E
yt∼pt

`(ŷ, yt),

so that 0 ∈ ∂ Eyt∼pt `(ŷ∗t , yt); that this is possible is implied by the assumption on the loss `
stated in Section 5.2. This choice implies that ∂`(ŷ∗t , yt) = δt is a zero mean real variable
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conditionally on the past, i.e. E[δt | Gt] = 0, where Gt = σ(ŷ1:t−1). This particular choice for
the ŷt in the dual game leads to the upper bound

⟪ sup
xt∈X

sup
pt∈∆Y

E
yt∼pt
⟫
n

t=1

[
V

(
n∑
t=1

T(xt, ŷ∗t , δt)
)]
,

which is, in turn, upper bounded by

⟪ sup
zt∈X×Y

sup
pt∈∆[−L,L]:E[δt]=0

E
δt∼pt
⟫
n

t=1

[
V

(
n∑
t=1

T(zt, δt)
)]
.

The last expression can be written in the functional form as

sup
z,p

Eδ∼p
[
V

(
n∑
t=1

T(zt, δt)
)]

.

using the notation of the lemma, with the supremum over p ranging over all joint distributions
on δ = (δ1, . . . , δn) satisfying E[δt | δ1:t−1] = 0 for all t ∈ [n]. The non-positivity of the latter
quantity is therefore sufficient to ensure the existence of a prediction strategy satisfying
(5.1).

Proof of Theorem 3. We first establish existence of U under the premise of the lemma.
The construction is given by

U(τ) = sup
z,p

E
δ∼p

V
τ +

∑
t≥1

T(zt, δt)
 . (5.23)

Then under the probabilistic inequality that is the premise of the lemma, it holds that

U(0) = sup
z,p

E
δ∼p

V
∑
t≥1

T(zt, δt)
 ≤ 0.

Next, by our assumption, ∃z0 s.t. T(z0, 0) = 0, we can lower bound the supremum in (5.23)
by considering a particular z that is constant zt := z0 for all t, and a distribution for δt that
only places mass on the singleton 0. This yields a lower bound

U(τ) ≥ V (τ).

To verify the third condition, observe that for any zero-mean random variable α with
distribution p supported on [−L,L],

E
α

[U(τ + T(z, α))] = E
α

[
sup
z,p

E
δ∼p

[
V

(
τ + T(z, α) +

∑
t

T(zt, δt)
)]]

≤ sup
z,p

E
δ∼p

[
V

(
τ +

∑
t

T(zt, δt)
)]

= U(τ).
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For the converse, assume we have a function U satisfying the three properties. Fix any z and
p of length n. In this case, by property 2o, the following inequality holds deterministically:

V

(
n∑
t=1

T(zt, δt)
)
≤ U

(
n∑
t=1

T(zt, δt)
)
.

By property 3o, we have that for any time s,

E
δn

U
(

s∑
t=1

T(zt, δt)
)
≤ U

(
s−1∑
t=1

T(zt, δt)
)
.

Continuing this argument all the way to t = 0 and using property 1o,

sup
z,p

E
δ∼p

[
V

(
n∑
t=1

T(zt, δt)
)]
≤ U(0) ≤ 0.

5.10.2 Proofs from Section 5.5

Sketch of proofs for claims from Section 5.5.2. For the `2 result we have

n∑
t=1

`(ŷt, yt)− min
‖w‖2≤1

n∑
t=1

`(〈w, xt〉 , yt)− 2L
√√√√ n∑
t=1
‖xt‖2

2

≤ sup
‖w‖2≤1

{
n∑
t=1

∂`(ŷt, yt)(ŷt,−〈w, xt〉)
}
− 2L

√√√√ n∑
t=1
‖xt‖2

2

=
n∑
t=1

∂`(ŷt, yt)ŷt +
∥∥∥∥∥
n∑
t=1

∂`(ŷt, yt)xt
∥∥∥∥∥

2
− 2L

√√√√ n∑
t=1
‖xt‖2

2

≤
n∑
t=1

∂`(ŷt, yt)ŷt + Usquare

 n∑
t=1

∂`(ŷt, yt)xt, L
√√√√ n∑
t=1
‖xt‖2

2

.
The path from here to a Burkholder function in the sense of Theorem 3 is clear given the
three properties of Usquare stated in the main body.

For the `∞ result, the quantity

n∑
t=1

`(ŷt, yt)− min
‖w‖∞≤1

n∑
t=1

`(〈w, xt〉 , yt)− 2L

∥∥∥∥∥∥
(

n∑
t=1

x2
t

)1/2
∥∥∥∥∥∥

1
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can be upper bounded by

sup
‖w‖∞≤1

{
n∑
t=1

∂`(ŷt, yt)(ŷt,−〈w, xt〉)
}
− 2L

∥∥∥∥∥∥
(

n∑
t=1

x2
t

)1/2
∥∥∥∥∥∥

1

=
n∑
t=1

∂`(ŷt, yt)ŷt +
∥∥∥∥∥
n∑
t=1

∂`(ŷt, yt)xt
∥∥∥∥∥

1
− 2L

∥∥∥∥∥∥
(

n∑
t=1

x2
t

)1/2
∥∥∥∥∥∥

1

≤
n∑
t=1

∂`(ŷt, yt)ŷt +
d∑
i=1

Usquare

 n∑
t=1

∂`(ŷt, yt)xt[i], L
√√√√ n∑
t=1

(xt[i])2
2

,
where xt[i] refers to the ith coordinate of xt. Once again, the three properties of Usquare
directly lead to a valid Burkholder function U.

Proof of Proposition 4. Let An = ρ
∑n
t=1 ztz

>
t + λI and A0 = λI. Recall that ΨA(w) =

1
2〈w,Aw〉. We begin by rewriting the desired regret bound as

B(w; z1, . . . , zn) = λΦ((w, 1)) + c log(det(An)/ det(A0))

for a constant c > 0 to be determined. With this definition, we have

sup
w∈Rd
{Regn(w)− B(w; z1, . . . , zn)}

= sup
w∈Rd

{
n∑
t=1

`(ŷt, yt)−
n∑
t=1

`(〈w, xt〉, yt)− λΦ((w, 1))
}
− c log(det(An)/ det(A0))

Using strong convexity of `:

= sup
w∈Rd

{
n∑
t=1

∂`(ŷt, yt)(ŷt − 〈w, xt〉)−
ρ

2(ŷt − 〈w, xt〉)2 − λΦ((w, 1))
}
− c log(det(An)/ det(A0))

= sup
w∈Rd

{
n∑
t=1

∂`(ŷt, yt)(−〈(w, 1), zt〉)−
ρ

2(〈(w, 1), zt〉)2 − λΦ((w, 1))
}
− c log(det(An)/ det(A0))

We now move to an upper bound by allowing the final coordinate of (w, 1) to act as a free
parameter.

≤ sup
w∈Rd+1

{
n∑
t=1

∂`(ŷt, yt)〈w, zt〉 −
ρ

2〈w, zt〉
2 − λΦ(w)

}
− c log(det(An)/ det(A0))

We can rewrite this as

≤ sup
w∈Rd+1

{〈
w,

n∑
t=1

∂`(ŷt, yt)zt
〉
−ΨρΣn(w)− λΦ(w)

}
− c log(det(An)/ det(A0))

= sup
w∈Rd+1

{〈
w,

n∑
t=1

∂`(ŷt, yt)zt
〉
−ΨAn(w)

}
− c log(det(An)/ det(A0))

= Ψ?
An

(
n∑
t=1

∂`(ŷt, yt)zt
)
− c log(det(An)/ det(A0)).

70



This establishes that T(xt, ŷt, δt) =
(
δtzt, ztz

>
t

)
∈ Rd+1 × Sd+1

+ is a sufficient statistic. This is
because we can write

V (x,A) = Ψ?
ρA+λI(x)− c log(det(ρA+ λI)/ det(A0)).

and we just proved that

sup
w∈Rd
{Regn(w)− B(x1, . . . , xn)} ≤ V

(
n∑
t=1

T(xt, ŷt, δt)
)
.

Proof of Theorem 4. Recall that we have defined

U(x,A) = V (x,A) = Ψ?
A(x)− c log(det(A)/ det(A0)).

We verify the properties from Theorem 3. Property 2o is immediate, and for property 1o we
have

U(0) = Ψ?
0+λI(0)− c log(det(A0)/ det(A0)) = 0.

We proceed to prove property 3o. Fix τ = (τ1, τ2) ∈ T = Rd+1 × Sd+1
+ and a mean-zero

distribution p over [−L,L]. Then we have

E
α∼p

U(τ + T(z, α)) = E
α∼p

[
Ψ?
ρ(τ2+zz>)+λI(τ1 + αz)− c log(det(ρ(τ2 + zz>) + λI)/ det(A0))

]
= E

α∼p

[
Ψ?
ρ(τ2+zz>)+λI(τ1 + αz)

]
− c log(det(ρ(τ2 + zz>) + λI)/ det(A0)).

Let A = ρ(τ2 + zz>) + λI and B = ρτ2 + λI. Then since Ψ? is a squared Euclidean norm
and α is mean-zero:

E
α∼p

[Ψ?
A(τ1 + αz)] ≤ Ψ?

A(τ1) + E
α∼p

[
α2
〈
z, A−1z

〉]
≤ Ψ?

A(τ1) + L2
[
α2
〈
z, A−1z

〉]
.

Also note that since B � A, Ψ?
A(τ1) ≤ Ψ?

B(τ1).

To conclude, observe that we just established

E
α∼p

U(τ + T(z, α)) ≤ Ψ?
B(τ1) + L2

〈
z, A−1z

〉
− c log(det(A)/ det(A0)).

Using a standard argument (e.g. from Cesa-Bianchi and Lugosi (2006)) and using that
A = B + ρzz>:

≤ Ψ?
B(τ1) + L2

ρ
log(det(A)/ det(B))− c log(det(A)/ det(A0)).

For c ≥ L2/ρ, this is bounded by

≤ Ψ?
B(τ1)− c log(det(B)/ det(A0))

= U(τ).
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Proof of Proposition 5. Recall that Bη(x1, . . . , xn) = ητL2

2 ‖
∑n
t=1M(xt)‖σ+ c

η
. Linearizing

the loss with the adaptive bound as in (5.2),
n∑
t=1

`(ŷt, yt)− inf
w∈W

`(〈w, xt〉, yt)− Bη(x1, . . . , xn)

≤ sup
w∈W

{
n∑
t=1

∂`(ŷt, yt)(ŷt − 〈w, xt〉)− Bη(x1, . . . , xn)
}

=
n∑
t=1

∂`(ŷt, yt)ŷt + r

∥∥∥∥∥
n∑
t=1

∂`(ŷt, yt)xt
∥∥∥∥∥
σ

− Bη(x1, . . . , xn).

We now abbreviate ∂`(ŷt, yt) = δt and expand out Bη, yielding
n∑
t=1

δt · ŷt + τ

∥∥∥∥∥
n∑
t=1

δtxt

∥∥∥∥∥
σ

− ητL2

2

∥∥∥∥∥
n∑
t=1
M(xt)

∥∥∥∥∥
σ

− c

η
.

Using the fact that λ1(H(x)) = ‖x‖σ, linearity of H, and that M(xt) is positive semidefinite,
we write this as

n∑
t=1

δt · ŷt + τλ1

(
n∑
t=1

δtH(xt)
)
− τλ1

(
ηL2

2

n∑
t=1
M(xt)

)
− c

η

Sub-additivity of λ1 gives a further upper bound of
n∑
t=1

δt · ŷt + τλ1

(
n∑
t=1

δtH(xt)−
ηL2

2

n∑
t=1
M(xt)

)
− c

η

Then T(xt, ŷt, δt) = (δt · ŷt, δt · H(xt),M(xt)) ∈ R × Sd1+d2 × Sd1+d2
+ is a sufficient statistic.

Namely, writing

V (a,H,M) = a+ τλ1

(
H − ηL2

2 M

)
− c

η
,

our calculation shows that

sup
w∈W
{Regn(w)− B(x1, . . . , xn)} ≤ V

(
n∑
t=1

T(xt, ŷt, δt)
)
.

5.10.3 Proofs from Section 5.6

Proof of Proposition 6. We define a potential function that will eventually be used in the
construction of the Burkholder function U we provide for V . As discussed in the main body,
a variant of this potential was first introduced by McMahan and Orabona (2014) for the
special case of Hilbert spaces. Let Ψ(x) = 1

2‖x‖
2 (not necessarily a Hilbert space norm) and

define
Fn(x) = γ exp

(
Ψ(x)
an

)
.
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From (McMahan and Orabona, 2014, Lemma 14), along with the additional fact that
(f(‖·‖))? = f ?(‖·‖?) for general dual norm pairs, it holds that

F ?
n(w) ≤ ‖w‖?

√√√√2an log
(√

an‖w‖?
γ

+ 1
)
.

This is all we need to establish the result. We proceed as follows

sup
w∈Rd
{Regn(w)− B(w)}

= sup
w∈Rd

{
n∑
t=1

`(ŷt, yt)− `(〈w, xt〉, yt)− B(w)
}

≤ sup
w∈Rd

{
n∑
t=1

∂`(ŷt, yt)(ŷt − 〈w, xt〉)− B(w)
}

=
n∑
t=1

∂`(ŷt, yt) · ŷt + sup
w∈Rd

{〈
w,

n∑
t=1

∂`(ŷt, yt)xt
〉
− B(w)

}

Using the inequality for the potential F ?
n stated above:

≤
n∑
t=1

∂`(ŷt, yt) · ŷt + F ?
n

(
n∑
t=1

∂`(ŷt, yt)xt
)
− c

It follows that T(xt, ŷt, δt) = (δt · ŷt, δt · xt) ∈ R×X is a sufficient statistic. This is because
we can write

V (b, x) = b+ F ?
n(x)− c.

and we have just shown that

sup
w
{Regn(w)− B(x1, . . . , xn)} ≤ V

(
n∑
t=1

T(xt, ŷt, δt)
)
.

Proof of Theorem 6. Since U depends on time, we generalize the properties of Theorem 3
to

1o U0(0) ≤ 0

2o For any τ ∈ T , Un(τ) ≥ V (τ)

3o For any τ ∈ T , z ∈ X ×Y , and any mean-zero distribution p on [−L,L], and any t ≥ 1

E
α∼p

[Ut(τ + T(z, α))] ≤ Ut−1(τ) (5.24)

3′ For any τ ∈ T , z ∈ X × Y , and any t ≥ 1,

∀τ ∈ T , z ∈ X × Y , E
ε

Ut(τ + T(z, εL)) ≤ Ut−1(τ),

where ε is a Rademacher random variable.
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Recall that for simplicity we assume L = 1 and X is a unit ball: ‖x‖ ≤ 1. Let Ψ(x) = 1
2‖x‖

2,
where we have assumed that β-smoothness of Ψ:

Ψ(x+ y) ≤ Ψ(x) + 〈∇Ψ(x), y〉+ β

2 ‖y‖
2.

Define a family of potentials

Ft(x) = γ exp
(

Ψ(x)
at

+ 1
2

n∑
s=t+1

1
s

)

and F0 = γ exp
(

1
2
∑n
t=1

1
t

)
. Note that Fn here is the same as in the proof of Proposition 6.

Observe that
Ut(b, x) = b+ F ?

t (x)− c,

where F ?
t is as defined as in the proof of Proposition 6. We proceed to establish the three

properties of U from Theorem 3. Property 2o holds since V = Un. We will show property 3′
first, then conclude with property 1o. Note that α 7→ Ut(τ + T(z, α)) is convex with respect
to α, and so it indeed suffices to show property 3′.

Fix an element τ = (τ1, τ2) ∈ R×X = T of the sufficient statistic space. At time n we have

E
ε

[Un(τ + T(z, ε))] = E
ε
[τ1 + ε · ŷ + Fn(τ2 + εxn)]− c = τ1 + E

ε
[Fn(τ2 + εxn)]− c.

To handle Fn, begin by using smoothness of Ψ:

E
ε
[Fn(τ2 + εxn)] = E

ε
exp

(
Ψ(τ2 + εx)

an

)
≤ E

ε
exp

(
Ψ(τ2) + ε〈∇Ψ(τ2), x〉+ β

2‖x‖
2

an

)

Using the standard Rademacher mgf bound, Eε eλε ≤ eλ
2/2, we upper bound the above

quantity by

exp
(

Ψ(τ2) + β
2‖x‖

2

an
+ 〈∇Ψ(τ2), x〉2

2(an)2

)
≤ exp

(
Ψ(τ2) + β

2‖x‖
2

an
+ ‖∇Ψ(τ2)‖2

?‖x‖
2

2(an)2

)
.

Using the assumption ‖x‖ ≤ 1, we obtain an upper bound of

exp
(

Ψ(τ2) + β
2

an
+ ‖∇Ψ(τ2)‖2

?

2(an)2

)
.

We now use a basic fact from convex analysis, namely that any β-smooth convex function f ,
1

2β‖∇f(x)−∇f(y)‖2
? ≤ f(x)− f(y)− 〈∇f(y), x− y〉 . This yields an upper bound

exp
(

Ψ(τ2) + β
2

an
+ βΨ(τ2)

(an)2

)
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Setting a = β, this is equal to

exp
(

1
β

( 1
n

+ 1
n2

)
Ψ(τ2) + 1

2n

)
.

As a last step, observe that 1
n

+ 1
n2 ≤ 1

n−1 . Indeed,

1
n

+ 1
n2 = 1

n

(
1 + 1

n

)
= 1
n− 1

(
1− 1

n

)(
1 + 1

n

)
= 1
n− 1

(
1− 1

n2

)
≤ 1
n− 1 .

Therefore, we have established that

E
ε
[Fn(τ2 + εxn)] ≤ exp

(
Ψ(τ2)

β(n− 1) + 1
2n

)
= Fn−1(τ2),

and in particular Eε Un(τ + T(z, ε)) ≤ Un−1(τ). In fact, by folding the terms 1
2
∑n
s=t+1

1
s
—

which do not depend on data—into a multiplicative constant, this argument yields, for any t
and any ‖x‖ ≤ 1,

E
ε
[Ft(τ + εx)] ≤ Ft−1(τ).

Thus, for each t ≥ 2 we have

E
ε

[Ut(τ + T(z, ε))] = E
ε
[τ1 + ε · ŷ + Fn(τ2 + εx)]− c ≤ Ut−1(τ).

The argument also yields (by removing unnecessary steps):

E
ε
[F1(0 + εx)] ≤ γ exp

(
1
2

n∑
t=1

1
t

)
= F0.

This means that

U0(0) = γ exp
(

1
2

n∑
t=1

1
t

)
− c ≤ γ exp(log(n)/2)− c.

We will set γ = 1√
n

and c = 1, which yields U0(0) ≤ 0.

5.10.4 Proofs from Section 5.7

Proof of Proposition 8. Recall that the regret inequality of interest is
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)− F
(

n∑
t=1

T(xt)
)
≤ 0.

As sketched in Section 5.7, Lemma 2 shows that this is implied by

sup
z

E
ε

[
V

(
n∑
t=1

T(zt, εt)
)]
≤ 0, (5.25)
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so the remainder of this proof will focus on the opposite direction. Suppose that `(ŷ, y) :=
|ŷ − y| is the absolute loss. We fix a Rademacher sequence ε1, . . . , εn and a tree x with
xt(ε) = xt(ε1, . . . , εt−1). As a lower bound, consider a randomized adversary that plays yt = εt
and xt = xt(ε). In this case the expected value of the regret inequality is

E
ε

[
n∑
t=1

`(ŷt, εt)− inf
f∈F

n∑
t=1

`(f(xt(ε)), εt)− F
(

n∑
t=1

T(xt(ε))
)]
.

Observe that for any ε ∈ {±1} we have `(ŷ, ε) = |1− ŷε| ≥ 1− ŷε. Since the range of each
f ∈ F lies in [−1, 1], we have `(f(x), ε) = 1− f(x)ε exactly. The expected value of the regret
inequality is therefore lower bounded by

E
ε

[
n∑
t=1

(1− ŷtεt)− inf
f∈F

n∑
t=1

(1− f(xt(ε))εt)− F
(

n∑
t=1

T(xt(ε))
)]

= E
ε

[
− inf

f∈F

n∑
t=1

(1− f(xt(ε))εt)− F
(

n∑
t=1

T(xt(ε))
)]

= E
ε

[
sup
w∈W

〈
w,

n∑
t=1

εtxt(ε)
〉
− F

(
n∑
t=1

T(xt(ε))
)]

= E
ε

[
V

(
n∑
t=1

T(xt(ε), 0, εt)
)]
.

For the final step, let ỹ be an arbitrary Y-valued tree ỹt(ε) = ỹt(ε1, . . . , εt−1). Using the
explicit form for V , we have

E
ε

[
V

(
n∑
t=1

T(xt(ε), ỹt(ε), εt)
)]

= E
ε

[
n∑
t=1

εtỹt(ε) + sup
w∈W

〈
w,

n∑
t=1

εtxt(ε)
〉
− F

(
n∑
t=1

T(xt(ε))
)]

= E
ε

[
0 + sup

w∈W

〈
w,

n∑
t=1

εtxt(ε)
〉
− F

(
n∑
t=1

T(xt(ε))
)]

= E
ε

[
V

(
n∑
t=1

T(xt(ε), 0, εt)
)]
.

Since the argument above holds for any trees x and ỹ, we conclude that the regret inequality
implies that

sup
z

E
ε

[
V

(
n∑
t=1

T(zt, εt)
)]
≤ 0.

for all X × Y-valued trees.

5.11 Chapter Notes

This chapter is adapted from Foster et al. (2018c). We thank Adam Osekowski for suggesting
the example in Section 5.5.2.
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Comparison With Other Algorithmic Approaches We have already shown that the
Burkholder method encompasses and extends the Mirror Descent/Follow-the-Regularized-
Leader family of algorithms. An alternative algorithmic approach is the relaxation framework,
which was introduced in Rakhlin et al. (2012) and extended to handle adaptive rates in
Foster et al. (2015). Compared to the relaxation framework, the present approach can handle
recursions which cannot be written in the form “`(ŷt, yt) + Rel(x1:t, y1:t)”, e.g. when the
potential function depends on past forecasts (ŷt). Furthermore, the relaxation framework
offers no insight into how to deduce additional structure such as sufficient statistics from
the algorithm. We remark that the potential framework for online learning described in
Cesa-Bianchi and Lugosi (2006), another well-known tool, is itself subsumed by the relaxation
framework and is thus subsumed by the Burkholder framework as well.
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Chapter 6

Bounding the Minimax Value:
Probabilistic Toolkit

In this chapter we introduce generic tools that can be used to directly prove new martingale
inequalities that arise from the equivalence framework, thereby certifying the existence of
Burkholder functions and prediction strategies.

To motivate the results, recall that many of the martingale inequalities we have seen so far
correspond to standard results from probability in Banach spaces and matrix concentration.
How should one proceed if, via the equivalence, they encounter a new martingale inequality
that is not already known to hold? What particular properties of the function V in the
martingale inequality supE [V ] ≤ 0 (cf. (5.5)) are important? If the adaptive rate of interest
involves regret against a benchmark function class F , how does the complexity of F influence
achievability?

These questions are particularly important when we move beyond simple linear classes. If
F is a class of neural networks, developing computationally efficient algorithms that work
for every sequence may be hopeless depending on the assumptions on the structure and
weights of the networks (Livni et al., 2014). This is only a computational hurdle however,
and the information-theoretic question of what rates can be achieved relative to F is still
quite interesting.

The main contribution of this chapter is to show that extensions to so-called sequential
complexity measures (Rakhlin et al., 2010) can be used to answer the questions above by
providing generic sufficient conditions under which adaptive rates can be achieved. In
particular, each adaptive rate induces a set of so-called offset complexity measures, and
obtaining small upper bounds on these quantities is sufficient to demonstrate achievability.

The analysis techniques we present recover and improves a wide variety of the adaptive rates,
including quantile bounds (a type of model selection bound), and small loss bounds, and
their second-order variants. In addition we derive a new online PAC-Bayes (McAllester, 1999)
theorem that holds for countably infinite sets.
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6.1 Background

Some of the significant developments in the theoretical foundations of online learning have
been motivated by the parallel developments in the realm of statistical learning. In particular,
this motivation has led to martingale extensions of empirical process theory, which were
shown to be the “right” notions for online learnability (Rakhlin et al., 2010, 2014). Two
topics, however, have remained elusive thus far in the general supervised setting: obtaining
data-dependent (e.g., small loss) bounds and establishing model selection (or, oracle-type)
inequalities for online learning problems. In this chapter we exploit the equivalence of online
prediction guarantees and martingale inequalities to develop new techniques for addressing
both these questions.

Oracle inequalities and model selection have been topics of intense research in statistics in
the last two decades (Birgé and Massart, 1998; Lugosi and Nobel, 1999; Bartlett et al., 2002).
Given a sequence of models M1,M2, . . . whose union is M, one aims to derive a procedure
that selects, given an i.i.d. sample of size n, an estimator f̂ from a model Mm̂ that trades
off bias and variance. Roughly speaking the desired oracle bound takes the form

err(f̂) ≤ inf
m

{
inf

f∈Mm

err(f) + penn(m)
}
,

where penn(m) is a penalty for the model m. Such oracle inequalities are attractive because
they can be shown to hold even if the overall model M is too large. A central idea in the
proofs of such statements (and an idea that will appear throughout the present chapter) is
that penn(m) should be “slightly larger” than the fluctuations of the empirical process for
the model m. It is therefore not surprising that concentration inequalities—and particularly
Talagrand’s celebrated inequality for the supremum of the empirical process—have played an
important role in attaining oracle bounds. In order to select a good model in a data-driven
manner, one establishes non-asymptotic data-dependent bounds on the fluctuations of an
empirical process indexed by elements in each model (Massart, 2007).

Lifting the ideas of oracle inequalities and data-dependent bounds from statistical to online
learning is not an obvious task. For one, there is no concentration inequality available, even
for the simple case of sequential Rademacher complexity. (For the reader already familiar
with this complexity: a change of the value of one Rademacher variable results in a change of
the remaining path, and hence an attempt to use a version of a bounded difference inequality
grossly fails). Luckily, as we show in this chapter, the concentration machinery is not needed
and one only requires a one-sided tail inequality. This realization is motivated by work of
Mendelson (2014); Liang et al. (2015); Rakhlin and Sridharan (2014). At a high level, our
approach will be to develop one-sided inequalities for the suprema of certain “offset” processes,
where the offset is chosen to be “slightly larger” than the complexity of the corresponding
model. We then show that these offset processes determine which data-dependent adaptive
rates are achievable for online learning problems, drawing strong connections to the ideas of
statistical learning.
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6.1.1 Framework

We work in the Online Supervised Learning setting from Section 2.3 where, X is the set of
observations, Ŷ is the space of decisions, Y is the set of outcomes, and ` : Ŷ × Y → R is the
loss function. The framework is defined by the following process: For t = 1, . . . , n, Nature
provides input instance xt ∈ X ; Learner selects prediction distribution qt ∈ ∆(Ŷ); Nature
provides label yt ∈ Y , while the learner draws prediction ŷt ∼ qt and suffers loss `(ŷt, yt).

Compared to the previous chapters in Part II we do not restrict the output space Ŷ to be a
subset of R. Consequently, the results in this section encompass online linear optimization
(X = {0} is a singleton set, Y and Ŷ are balls in dual Banach spaces and `(ŷ, y) = 〈ŷ, y〉).
Recall that an adaptive regret bound has the form B(f ;x1:n, y1:n), and is said to be achievable
if there exists a randomized algorithm for selecting ŷt such that

E
[
n∑
t=1

`(ŷt, yt)−
n∑
t=1

`(f(xt), yt)
]
≤ B(f ;x1:n, y1:n) ∀x1:n, y1:n, ∀f ∈ F . (6.1)

For uniform rates B, the sequential Rademacher complexity of F is one of the tightest
achievable uniform rates for many loss functions (Rakhlin et al., 2010; Rakhlin and Sridharan,
2014). We will show that offset versions of martingale processes that generalize the sequential
Rademacher complexity provide necessary and sufficient conditions for achievability of adaptive
rates.

We distinguish between three types of adaptive rates, according to whether B(f ;x1:n, y1:n)
depends only on f , only on (x1:n, y1:n), or on both quantities. Whenever B depends on f , an
adaptive regret bound can be viewed as an oracle inequality which penalizes each f according
to a measure of its complexity (e.g. the complexity of the smallest model to which it belongs).
As in statistical learning, an oracle inequality (6.1) may be proved for certain functions
B(f ;x1:n, y1:n) even if a uniform bound cannot hold for any nontrivial B.

Related Adaptive Regret Bounds The tools we introduce recover the vast majority of
known adaptive rates in literature, including variance bounds, quantile bounds, localization-
based bounds, and fast rates for small losses. It should be noted that while existing literature
on adaptive online learning has focused on simple hypothesis classes such as finite experts and
finite-dimensional p-norm balls, our results extend to general hypothesis classes, including
large nonparametric ones discussed in Rakhlin and Sridharan (2014).

The case when B(f ;x1:n, y1:n) = B(x1:n, y1:n) does not depend on f has received the most
attention in literature. The focus is on bounds that can be tighter for “nice sequences,” yet
maintain near-optimal worst-case guarantees. Results of this type include Hazan and Kale
(2010); Chiang et al. (2012); Duchi et al. (2011); Rakhlin and Sridharan (2013), couched in
the setting of online linear/convex optimization, and Cesa-Bianchi et al. (2007) in the experts
setting.

A bound of type B(f) was studied in Chaudhuri et al. (2009), which presented an algorithm
that competes with all experts simultaneously, but with varied regret with respect to each
of them depending on the quantile of the expert. Another bound of this type was given by
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McMahan and Orabona (2014), who consider online linear optimization with an unbounded
set and provide oracle inequalities with an appropriately chosen function B(f).

Finally, the third category of adaptive bounds are those that depend on both the hypothesis
f ∈ F and the data. The bounds that depend on the loss of the best function (so-called
“small-loss” bounds, (Cesa-Bianchi and Lugosi, 2006, Sec. 2.4), Srebro et al. (2010); Cesa-
Bianchi et al. (2007)) fall in this category trivially, since one may over-bound the loss of the
best function by the performance of f . We draw attention to a result of Luo and Schapire
(2015) who show an adaptive bound in terms of both the loss of comparator and the KL
divergence between the comparator and some pre-fixed prior distribution over experts. An
MDL-style bound in terms of the variance of the loss of the comparator (under the distribution
induced by the algorithm) was given in Koolen and van Erven (2015).

Beyond the examples given in this chapter, the tools we develop here will be used to derive
new adaptive learning guarantees in Part III.

6.2 Adaptive Rates and Achievability: General Setup

Recall from Chapter 2 that for any adaptive regret bound B, minimax achievability is defined
by

Vol
n (F ,B) := ⟪ sup

xt∈X
inf

qt∈∆(Ŷ)
sup
yt∈Y

E
ŷt∼qt
⟫
n

t=1

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

{
n∑
t=1

`(f(xt), yt) + B(f ;x1:n, y1:n)
}]
.

Vol
n (F ,B) quantifies how ∑n

t=1 `(ŷt, yt) − inff∈F {
∑n
t=1 `(f(xt), yt) + B(f ;x1:n, y1:n)} be-

haves when the optimal learning algorithm that minimizes this difference is
used against Nature trying to maximize it. Directly from this definition,
An adaptive rate B is achievable if and only if Vol

n (F ,B) ≤ 0.

If B is a uniform rate, i.e., B(f ;x1:n, y1:n) = B, achievability reduces to the minimax analysis
explored in Rakhlin et al. (2010). The uniform rate B is achievable if and only if B ≥ Vn(F),
where Vn(F) is the minimax value of the online learning game.

The aim of this chapter is to develop an understanding of when the minimax value Vol
n (F ,B)

for general adaptive rates B. We first show that the minimax value is bounded by an
offset version of the sequential Rademacher complexity studied in Rakhlin et al. (2010). The
symmetrization lemma (Lemma 7) below provides us with the first step towards a probabilistic
analysis of achievable rates. Before stating the lemma, we need to define the notion of a tree
and the notion of sequential Rademacher complexity.

Given a set Z, a Z-valued tree (or, predictable process) z of depth n is a sequence (zt)nt=1
of functions zt : {±1}t−1 → Z. For a tree z, the sequential Rademacher complexity of a
function class G ⊆ (Z → R) on z is defined as

Rseq
n (G, z) := E

ε
sup
g∈G

n∑
t=1

εtg(zt(ε)) and Rseq
n (G) := sup

z
Rseq
n (G, z) .
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Lemma 7. For any lower semi-continuous loss `, and any adaptive rate B,

Vol
n (F ,B) ≤ sup

x,y,y′
E
ε

[
sup
f∈F

{
2

n∑
t=1

εt`(f(xt(ε)),yt(ε))− B(f ; x1:n(ε),y′2:n+1(ε))
}]
. (6.2)

If one considers the supervised learning problem where F : X → R, Y ⊂ R and ` : R×R→ R
is a loss that is convex and L-Lipschitz in its first argument, then for any adaptive rate B,

Vol
n (F ,B) ≤ sup

x,y
E
ε

[
sup
f∈F

{
2L

n∑
t=1

εtf(xt(ε))− B(f ; x1:n(ε),y1:n(ε))
}]
. (6.3)

The above lemma tells us that to check whether an adaptive rate is achievable, it is sufficient
to check that the corresponding adaptive sequential complexity measures are non-positive.
Of course, if the above complexities are bounded by some positive quantity of a smaller order,
one can form a new achievable rate B′ by adding the positive quantity to B.

6.3 Probabilistic Tools

The analysis in this chapter rests on certain one-sided probabilistic inequalities. We now
state the first building block: a rather straightforward maximal inequality.
Proposition 11. Let I = {1, . . . , N}, N ≤ ∞, be a set of indices and let (Xi)i∈I be a
sequence of random variables satisfying the following tail condition: for any τ > 0,

P(Xi −Bi > τ) ≤ C1 exp
(
−τ 2/(2σ2

i )
)

+ C2 exp (−τsi) (6.4)

for some positive sequence (Bi), nonnegative sequence (σi) and nonnegative sequence (si) of
numbers, and for constants C1, C2 ≥ 0. Then for any σ̄ ≤ σ1, s̄ ≥ s1, and

θi = max
{
σi
Bi

√
2 log(σi/σ̄) + 4 log(i), (Bisi)−1 log

(
i2(s̄/si)

)}
+ 1,

it holds that

E sup
i∈I
{Xi −Biθi} ≤ 3C1σ̄ + 2C2(s̄)−1. (6.5)

We remark that Bi need not be the expected value of Xi, as we are not interested in two-sided
deviations around the mean.

A standard approach to obtain oracle-type inequalities (Massart, 2007) is to split a large class
into smaller ones according to a “complexity radius” and control a certain stochastic process
separately on each subset (also known as the peeling technique). In the applications that
follow, Xi will often stand for the (random) supremum of this process on subset i, and Bi will
be an upper bound on its typical size. Given deviation bounds for Xi above Bi, the dilated
size Biθi then allows one to pass to maximal inequalities (6.5) and thus verify achievability
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in Lemma 7. The same strategy works for obtaining data-dependent bounds, where we first
prove tail bounds for a given size of the data-dependent quantity, then appeal to (6.5).

A simple yet powerful example for the control of the supremum of a stochastic process is an
inequality due to Pinelis (Pinelis, 1994) for the norm (which is a supremum over the dual
ball) of a martingale in a 2-smooth Banach space. Here we state a version of this result that
can be found in Rakhlin et al. (2011), Appendix A.
Lemma 8. Let Z be a unit ball in a separable (2, D)-smooth Banach space B.1 For any
Z-valued tree z, and any n > τ/4D2

P
(∥∥∥∥∥

n∑
t=1

εtzt(ε)
∥∥∥∥∥ ≥ τ

)
≤ 2 exp

(
− τ2

8D2n

)

When the class of functions is not linear, we may no longer appeal to the above lemma.
Instead, we make use of a result from Rakhlin et al. (2015) that extends Lemma 8 at a
price of a poly-logarithmic factor. Before stating this lemma, we recall the definition of the
sequential covering number. First, a set V of R-valued trees is called an α-cover of G ⊆ RZ
on z with respect to `p if

∀g ∈ G,∀ε ∈ {±1}n,∃v ∈ V s.t.
n∑
t=1

(g(zt(ε))− vt(ε))p ≤ nαp.

The size of the smallest α-cover is denoted by Np(G, α, z), and Np(G, α, n) := supzNp(G, α, z).

The set V is an α-cover of G on z with respect to `∞ if

∀g ∈ G,∀ε ∈ {±1},∃v ∈ V s.t. |g(zt(ε))− vt(ε)| ≤ α ∀t ∈ [n].

We let N∞(G, α, z) be the smallest such cover and set N∞(G, α, n) = supzN∞(G, α, z).
Lemma 9 (Rakhlin et al. (2015)). Let G ⊆ [−1, 1]Z . Suppose Rseq

n (G)/n→ 0 with n→∞
and that the following mild assumptions hold: Rseq

n (G) ≥ 1/n, N∞(G, 2−1, n) ≥ 4, and there
exists a constant Γ such that Γ ≥ ∑∞j=1N∞(G, 2−j, n)−1. Then for any θ >

√
12/n, for any

Z-valued tree z of depth n,

P
(

sup
g∈G

∣∣∣∣∣
n∑
t=1

εtg(zt(ε))
∣∣∣∣∣ > 8

(
1 + θ

√
8n log3(en2)

)
· Rseq

n (G)
)

≤ P
(

sup
g∈G

∣∣∣∣∣
n∑
t=1

εtg(zt(ε))
∣∣∣∣∣ > n inf

α>0

{
4α + 6θ

∫ 1

α

√
logN∞(G, δ, n)dδ

})
≤ 2Γe−nθ

2
4 .

This lemma yields a one-sided control on the size of the supremum of the sequential
Rademacher process, as required for our oracle-type inequalities.

Next, we turn our attention to an offset Rademacher process, where the supremum is taken
over a collection of negative-mean random variables. The behavior of this offset process
was shown to govern the optimal rates of convergence for online nonparametric regression
(Rakhlin and Sridharan, 2014). Such one-sided control of the supremum will be necessary for
some of the data-dependent upper bounds we develop.

1Cf. Section 1.7.
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Lemma 10. Let z be a Z-valued tree of depth n, and let G ⊆ RZ . For any γ ≥ 1/n and
α > 0,

P
(

sup
g∈G

n∑
t=1

(
εtg(zt(ε))− 2αg2(zt(ε))

)
− logN2(G, γ, z)

α
− 12
√

2
∫ γ

1/n

√
n logN2(G, δ, z)dδ − 1 > τ

)

≤ Γ exp
(
− τ2

2σ2

)
+ exp

(
−ατ2

)
,

where Γ ≥ ∑log2(2nγ)
j=1 N2(G, 2−jγ, z)−2 and σ = 12

∫ γ
1
n

√
n logN2(G, δ,z)dδ.

Observe that the probability of deviation has both subgaussian and subexponential compo-
nents.

Using the above result and Proposition 11 leads to useful bounds on the quantities in Lemma 7
for specific types of adaptive rates. Given a tree z, we obtain a bound on the expected size
of the sequential Rademacher process when we subtract off the data-dependent `2-norm of
the function on the tree z, adjusted by logarithmic terms.
Corollary 6. Suppose G ⊆ [−1, 1]Z , and let z be any Z-valued tree of depth n. Assume
logN2(G, δ, n) ≤ δ−p for some p < 2. Then

E sup
g∈G,γ

{
n∑
t=1

εtg(zt(ε))− 4

√√√√2(logn) logN2(G, γ/2, z)
(

n∑
t=1

g2(zt(ε)) + 1
)

−24
√

2 logn
∫ γ

1/n

√
n logN2(G, δ, z)dδ

}
≤ 7 + 2 logn .

The next corollary yields slightly faster rates than Corollary 6 when |G| <∞.
Corollary 7. Suppose G ⊆ [−1, 1]Z with |G| = N , and let z be any Z-valued tree of depth
n. Then

E sup
g∈G


n∑
t=1

εtg(zt(ε))− 2 log
(

logN
n∑
t=1

g2(z(ε)) + e

)√√√√32
(

logN
n∑
t=1

g2(z(ε)) + e

) ≤ 1.

6.4 Achievable Rates

In this section we use Lemma 7 along with the probabilistic tools from the previous section
to obtain an array of achievable adaptive regret bounds for various online learning problems.
We subdivide the section into subsections based on the categories for adaptive regret bounds
described in Section 6.1.1.

6.4.1 Model Adaptation

In this subsection we focus on achievable rates for oracle inequalities and model selection, but
without dependence on data. The form of the rate is therefore B(f). Assume we have a class
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F = ⋃
R≥1F(R), with the property that F(R) ⊆ F(R′) for any R ≤ R′. Let us adopt the

abbreviation Rn := Rseq
n . If we are told by an oracle that regret will be measured with respect

to those hypotheses f ∈ F with R(f) := inf{R : f ∈ F(R)} ≤ R∗, then using the minimax
algorithm one can guarantee a regret bound of at most the sequential Rademacher complexity
Rn(F(R∗)). On the other hand, given the optimality of the sequential Rademacher complexity
for online learning problems for commonly encountered losses, we can argue that for any
f ∈ F chosen in hindsight, one cannot expect a regret better than order Rn(F(R(f))). In
this section we show that simultaneously for all f ∈ F , one can attain an adaptive upper
bound of O

(
Rn(F(R(f)))

√
log (Rn(F(R(f)))) log3/2 n

)
. That is, we may predict as if we

knew the optimal radius, at the price of a logarithmic factor. This is the price of adaptation.
Corollary 8. For any class of predictors F with F(1) non-empty, if one considers the
supervised learning problem with 1-Lipschitz loss `, the following rate is achievable:

B(f) = log3/2 n

(
K1Rn(F(2R(f)))

(
1 +

√
log

( log(2R(f)) · Rn(F(2R(f)))
Rn(F(1))

))
+K2ΓRn(F(1))

)
,

for absolute constants K1, K2, and Γ defined in Lemma 9.

In fact, this statement is true more generally with F(2R(f)) replaced by ` ◦ F(2R(f)). It is
tempting to attempt to prove the above statement with the exponential weights algorithm
running as an aggregation procedure over the solutions for each R. In general, this approach
will fail for two reasons. First, if function values grow with R, the exponential weights
bound will scale linearly with this value. Second, an experts bound yields only a slower

√
n

rate. In Chapter 9 we show that by combining the techniques of this chapter with those of
Chapter 5, we can overcome these difficulties to derive universal and efficient algorithms for
model selection in online convex optimization and online learning.

As a special case of the above lemma, we obtain an online PAC-Bayesian theorem. We
postpone this example to the next sub-section where we get a data-dependent version of
this result. We now provide a bound for online linear optimization in 2-smooth Banach
spaces that automatically adapts to the norm of the comparator. To prove it, we use Pinelis’
concentration bound (Lemma 8) within the proof of the above corollary to remove the extra
logarithmic factors.
Example 8 (Unconstrained Linear Optimization). Consider linear optimization with
Y being the unit ball of some reflexive Banach space with norm ‖·‖∗. Let F = Ŷ be the dual
space and the loss `(ŷ, y) = 〈ŷ, y〉 (where we are using 〈·, ·〉 to represent the linear functional
in the first argument to the second argument). Define F(R) = {f | ‖f‖ ≤ R} where ‖·‖ is the
norm dual to ‖·‖∗. If the unit ball of Y is (2, D)-smooth, then the following rate is achievable
for all f with ‖f‖ ≥ 1:

B(f) = D
√
n
(

8‖f‖
(

1 +
√

log(2‖f‖) + log log(2‖f‖)
)

+ 12
)
.

For special case of Hilbert spaces, this bound was achieved by McMahan and Orabona (2014).
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6.4.2 Adapting to Data and Model Simultaneously

We now study achievable bounds that perform online model selection in a data-adaptive way.
Of particular note is a new online optimistic PAC-Bayesian bound. This bound should be
compared to Luo and Schapire (2015) and Koolen and van Erven (2015), with the reader
noting that it is independent of the number of experts, is algorithm-independent, and depends
quadratically on the expected loss of the expert we compare against.
Example 9 (Generalized Predictable Sequences (Supervised Learning)). Consider
an online supervised learning problem with a convex 1-Lipschitz loss. Let (Mt)t≥1 be any
predictable sequence that the learner can compute at round t based on information provided
so far, including xt (One can think of the predictable sequence Mt as a prior guess for
the hypothesis we would compare with in hindsight). Then the following adaptive rate is
achievable:

B(f ;x1:n) = inf
γ

{
K1

√√√√logn · logN2(F , γ/2, n) ·
(

n∑
t=1

(f(xt)−Mt)2 + 1
)

+K2 logn
∫ γ

1/n

√
n logN2(F , δ, n)dδ + 2 logn+7

}
,

for constants K1 = 4
√

2, K2 = 24
√

2 from Corollary 6. If we assume that the sequential
covering of class F grows as logN2(F , ε, n) ≤ ε−p for some p < 2, we get that

B(f) = Õ

((√∑n
t=1 (f(xt)−Mt)2 + 1

)1− p2 (√
n
)p/2)

.

As p approaches zero, we get full adaptivity and are able to replace n by ∑n
t=1 (f(xt)−Mt)2 +1.

On the other hand, as p gets closer to 2 (i.e. more complex function classes), we do not adapt
and get a uniform bound in terms of n. For p ∈ (0, 2), we attain a natural interpolation.

The achievability of Example 9 is a direct consequence of Eq. (6.3) in Lemma 7, followed
by Corollary 6 (one can include any predictable sequence in the Rademacher average part
because ∑tMtεt is zero mean).
Example 10 (Regret to Fixed Vs Regret to Best (Supervised Learning)). Consider
an online supervised learning problem with a convex 1-Lipschitz loss and let |F| = N . Let
f ? ∈ F be a fixed expert chosen in advance. The following bound is achievable:

B(f, x1:n) = 4 log
(

logN
n∑
t=1

(f(xt)− f?(xt))2 + e

)√√√√32
(

logN
n∑
t=1

(f(xt)− f?(xt))2 + e

)
+ 2.

In particular, against f ? we have B(f ?, x1:n) = O(1), and against an arbitrary expert we have
B(f, x1:n) = O

(√
n logN(log (n · logN))

)
.

Example 10 follows from Eq. (6.3) in Lemma 7 followed by Corollary 7. The example extends
the study of Even-Dar et al. (2008) to supervised learning and general class of experts F .
Example 11 (Optimistic PAC-Bayes). Assume that we have a countable set of experts
and that the loss for each expert on any round is non-negative and bounded by 1. The function
class F is the set of all distributions over these experts, and X = {0}. This setting can
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be formulated as online linear optimization where the loss of mixture f over experts, given
instance y, is 〈f, y〉, the expected loss under the mixture. The following adaptive bound is
achievable:

B(f ; y1:n) =

√√√√50 (KL(f |π) + log(n))
n∑
t=1

E
i∼f
〈ei, yt〉2 + 50 (KL(f |π) + log(n)) + 10.

This adaptive bound is an online PAC-Bayesian bound. The rate adapts not only to the
KL divergence of f with fixed prior π but also replaces n with ∑n

t=1 Ei∼f 〈ei, yt〉
2. Note that

we have ∑n
t=1 Ei∼f 〈ei, yt〉

2 ≤ ∑n
t=1 〈f, yt〉, yielding the small-loss type bound described earlier.

This is an improvement over the bound in Luo and Schapire (2015) in that the bound is
independent of number of experts, and so holds even for countably infinite sets of experts.
The KL term in our bound may be compared to the MDL-style term in the bound of Koolen
and van Erven (2015). If we have a large (but finite) number of experts and take π to be
uniform, the above bound provides an improvement over both Chaudhuri et al. (2009)2 and
Luo and Schapire (2015).
Evaluating the above bound with a distribution f that places all its weight on any one
expert appears to address the open question posed by Cesa-Bianchi et al. (2007) of obtaining
algorithm-independent oracle-type variance bounds for experts. The proof of achievability
of the above rate is deferred to Section 6.5 because it requires a slight variation on the
symmetrization lemma specific to the problem.

6.5 Detailed Proofs

Proof of Lemma 7. We first prove equation (6.2). We start from the definition of Vol
n (F ,B). Our

proof proceeds “inside out” by starting with the nth term and then working backwards by repeatedly
applying the minimax theorem (Section 2.6). We start with the innermost term as,

sup
xn∈X

inf
qn∈∆(Ŷ)

sup
yn∈Y

(
Eŷn∼qn

[
`(ŷn, yn)− inf

f∈F

{
n∑
t=1

`(f(xt), yt) + B(f ;x1:n, y1:n)
}])

= sup
xn∈X

inf
qn∈∆(Ŷ)

sup
pn∈∆(Y)

(
Eŷn∼qn
yn∼pn

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

{
n∑
t=1

`(f(xt), yt) + B(f ;x1:n, y1:n)
}])

= sup
xn∈X

sup
pn∈∆(Y)

inf
qn∈∆(Ŷ)

(
Eŷn∼qn
yn∼pn

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

{
n∑
t=1

`(f(xt), yt) + B(f ;x1:n, y1:n)
}])

= sup
xn∈X

sup
pn∈∆(Y)

inf
ŷn∈Ŷ

(
Eyn∼pn

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

{
n∑
t=1

`(f(xt), yt) + B(f ;x1:n, y1:n)
}])

= sup
xn∈X

sup
pn∈∆(Y)

(
Eyn∼pn

[
sup
f∈F

{
inf
ŷn∈Ŷ

Eyn∼pn

[
n∑
t=1

`(ŷt, yt)
]
−

n∑
t=1

`(f(xt), yt)− B(f ;x1:n, y1:n)
}])

.

To apply the minimax theorem in step 3 above, we note that the term in the round bracket is linear
in qn and in pn (as it is an expectation). Hence under mild assumptions on the sets Ŷ and Y, the

2See Luo and Schapire (2015) for a detailed discussion of the differences between KL-based bounds and
quantile bounds.
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losses, and the adaptive rate B, one can apply a generalized version of the minimax theorem to
swap suppn and infqn . Compactness of the sets and lower semi-continuity of the losses and B are
sufficient; see Section 2.6 for discussion. but see Rakhlin et al. (2015); Rakhlin and Sridharan (2012)
for milder conditions. Proceeding backward from n to 1 in a similar fashion we end up with the
following quantity:

Vol
n (F ,B)

= ⟪ sup
xt∈X

inf
qt∈∆(Ŷ)

sup
yt∈Y

E
ŷt∼qt
⟫
n

t=1

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

{
n∑
t=1

`(f(xt), yt) + B(f ;x1:n, y1:n)
}]

= ⟪ sup
xt∈X

sup
pt∈∆(Y)

E
yt∼pt
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

inf
ŷt∈Ŷ

Eyt∼pt [`(ŷt, yt)]−
n∑
t=1

`(f(xt), yt)− B(f ;x1:n, y1:n)
}]

≤ ⟪ sup
xt∈X

sup
pt∈∆(Y)

E
yt∼pt
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

Ey′t∼pt
[
`(f(xt), y′t)

]
− `(f(xt), yt)− B(f ;x1:n, y1:n)

}]
. (6.6)

See Rakhlin and Sridharan (2012) for more details of the steps involved in obtaining the above
equality.

To proceed, we use Jensen’s inequality to pull out the expectations with respect to y′t’s, which gives

≤ ⟪ sup
xt∈X

sup
pt∈∆(Y)

E
yt,y′t∼pt

⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

`(f(xt), y′t)− `(f(xt), yt)− B(f ;x1:n, y1:n)
}]

≤ ⟪ sup
xt∈X

sup
pt∈∆(Y)

E
yt,y′t∼pt

sup
y′′t ∈Y
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

`(f(xt), y′t)− `(f(xt), yt)− B(f ;x1:n, y
′′
1:n)

}]

= ⟪ sup
xt∈X

sup
pt∈∆(Y)

E
yt,y′t∼pt

E
εt

sup
y′′t ∈Y
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

εt
(
`(f(xt), y′t)− `(f(xt), yt)

)
− B(f ;x1:n, y

′′
1:n)

}]
.

We now move to an upper bound by allowing a supremum over yt and y′t at each step.

≤ ⟪ sup
xt∈X

sup
yt,y′t∈Y

E
εt

sup
y′′t ∈Y
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

εt
(
`(f(xt), y′t)− `(f(xt), yt)

)
− B(f ;x1:n, y

′′
1:n)

}]

≤ ⟪ sup
xt∈X

sup
yt∈Y

E
εt

sup
y′′t ∈Y
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

2εt`(f(xt), yt)− B(f ;x1:n, y
′′
1:n)

}]

= sup
x,y,y′

Eε

[
sup
f∈F

{
2

n∑
t=1

εt`(f(xt(ε)),yt(ε))− B(f ; x1:n(ε),y′2:n+1(ε))
}]

,

where in the last step we switch to tree notation, but keep in mind that each y′′t is picked after
drawing εt, and thus the tree y′ appears with one index shifted. This proves (6.2).

Finally, we proceed to prove inequality (6.3). Here, we employ the convexity assumption `(ŷt, yt)−
`(f(xt), yt) ≤ `′(ŷt, yt)(ŷt − f(xt)), where the derivative is with respect to the first argument. As
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before, applying the minimax theorem,

Vol
n (F ,B) = ⟪ sup

xt∈X
inf

qt∈∆(Ŷ)
sup
yt∈Y

E
ŷt∼qt
⟫
n

t=1

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

{
n∑
t=1

`(f(xt), yt) + B(f ;x1:n, y1:n)
}]

= ⟪ sup
xt∈X

sup
pt∈∆(Y)

inf
ŷt∈Ŷ

E
yt∼pt
⟫
n

t=1

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

{
n∑
t=1

`(f(xt), yt) + B(f ;x1:n, y1:n)
}]

≤ ⟪ sup
xt∈X

sup
pt∈∆(Y)

inf
ŷt∈Ŷ

E
yt∼pt
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

`′(ŷt, yt)(ŷt − f(xt))− B(f ;x1:n, y1:n)
}]
.

We may now pick ŷt = ŷ∗t (pt) := arg minŷ Eyt∼pt [`(ŷt, yt)]. By convexity (and assuming the loss
allows swapping of derivative and expectation), Eyt∼pt [`′(ŷt, yt)] = 0. This (sub)optimal strategy
yields an upper bound of

⟪ sup
xt∈X

sup
pt∈∆(Y)

E
yt∼pt
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

(
`′(ŷ∗t , yt)− Ey′t∼pt

[
`′(ŷ∗t , y′t)

])
(ŷ∗t − f(xt))− B(f ;x1:n, y1:n)

}]
.

Since
(
`′(ŷ∗t , yt)− Ey′t∼pt [`′(ŷ∗t , y′t)]

)
ŷ∗t is independent of f and has expected value of 0, the above

quantity is equal to

⟪ sup
xt∈X

sup
pt∈∆(Y)

E
yt∼pt
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

(
Ey′t∼pt

[
`′(ŷ∗t , y′t)

]
− `′(ŷ∗t , yt)

)
f(xt)− B(f ;x1:n, y1:n)

}]

≤ ⟪ sup
xt∈X

sup
pt∈∆(Y)

E
yt,y′t∼pt

⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

(
`′(ŷ∗t , y′t)− `′(ŷ∗t , yt)

)
f(xt)− B(f ;x1:n, y1:n)

}]

= ⟪ sup
xt∈X

sup
pt∈∆(Y)

E
yt,y′t∼pt

E
εt
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

εt
(
`′(ŷ∗t , y′t)− `′(ŷ∗t , yt)

)
f(xt)− B(f ;x1:n, y1:n)

}]
.

Replacing (`′(ŷ∗t , y′t)− `′(ŷ∗t , yt)) by 2Lst for st ∈ [−1, 1] and taking supremum over st we get,

≤ ⟪ sup
xt∈X

sup
pt∈∆(Y)

E
yt,y′t∼pt

sup
st∈[−1,1]

E
εt
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

2Lεtstf(xt)− B(f ;x1:n, y1:n)
}]

≤ ⟪ sup
xt∈X

sup
yt

sup
st∈[−1,1]

E
εt
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

2Lεtstf(xt)− B(f ;x1:n, y1:n)
}]
.

Since the suprema over st are achieved at {±1} by convexity, the last expression is equal to

⟪ sup
xt∈X

sup
yt

sup
st∈{−1,1}

E
εt
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

2Lεtstf(xt)− B(f ;x1:n, y1:n)
}]

= ⟪ sup
xt∈X

sup
yt

E
εt
⟫
n

t=1

[
sup
f∈F

{
n∑
t=1

2Lεtf(xt)− B(f ;x1:n, y1:n)
}]

= sup
x,y

Eε

[
sup
f∈F

{
n∑
t=1

2Lεtf(xt(ε))− B(f ; x1:n(ε),y1:n(ε))
}]

.

In the last but one step we removed st, since for any function Ψ, and any s ∈ {±1}, E [Ψ(sε)] =
1
2 (Ψ(s) + Ψ(−s)) = 1

2 (Ψ(1) + Ψ(−1)) = E [Ψ(ε)].
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Proof of Proposition 11. Define Zi = [Xi −Biθi]+. As long as θi ≥ 1, for any strictly positive
τ we have the tail behavior

P(Zi ≥ t) = P(Xi −Biθi ≥ τ) ≤ C1 exp
(
−(Bi(θi − 1) + τ)2

2σ2
i

)
+ C2 exp (−(Bi(θi − 1) + τ)si) .

Note that for any positive sequence (δi)i∈I with δ =
∑
i∈I δi,

E
[
sup
i∈I
{Xi −Biθi}

]
≤ E

[
sup
i∈I

Zi

]
≤
∑
i∈I

E [Zi] ≤ δ +
∑
i∈I

∫ ∞
δi

P(Zi ≥ τ)dτ.

The sum of the integrals above is equal to∑
i∈I

∫ ∞
δi

P(Xi −Biθi ≥ τ)dτ

≤ C1
∑
i∈I

∫ ∞
0

exp
(
−(Bi(θi − 1) + τ)2

2σ2
i

)
dt+ C2

∑
i∈I

∫ ∞
0

exp (− (Bi(θi − 1) + τ) si) dτ

≤ C1
∑
i∈I

exp
(
−1

2

(
Bi
σi

)2
(θi − 1)2

)∫ ∞
0

e
− τ2

2σ2
i dτ + C2

∑
i∈I

exp (−Bisi (θi − 1))
∫ ∞

0
e−τsidτ

≤
√
π

2C1
∑
i∈I

σi exp
(
−1

2

(
Bi
σi

)2
(θi − 1)2

)
+ C2

∑
i∈I

s−1
i exp (−Bisi (θi − 1))

≤ π2√π
6
√

2
C1σ̄ + π2

6 C2(s̄)−1,

where the last step is obtained by plugging in the expression

θi = max
{
σi
Bi

√
2 log(σi/σ̄) + 4 log(i), (Bisi)−1 log

(
i2(s̄/si)

)}
+ 1

and using as an upper bound σi
Bi

√
2 log(i2σi/σ̄) + 1 for θi in the sub-gaussian part and

(Bisi)−1 log
(
i2s̄/si

)
+ 1 for θi in the sub-exponential part. Since δ can be chosen arbitrarily

small, we may over-bound the above constant and obtain the result.

Proof of Lemma 10. Fix γ > 0. For j ≥ 0, let Vj be a minimal sequential cover of G on z at
scale βj = 2−jγ and with respect to empirical `2 norm. Let vj [g, ε] be an element guaranteed to be
βj-close to f at the j-th level, for the given ε. Choose N = log2(2γn), so that βNn ≤ 1. Let us use
the shorthand N2(γ) := N2(G, γ, z).

For any ε ∈ {±1}n and g ∈ G,
n∑
t=1

εtg(zt(ε))− 2αg(zt(ε))2
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can be written as
n∑
t=1

(
εt(g(zt(ε))− v0

t [g, ε](ε))
)

+
n∑
t=1

(
εtv

0
t [g, ε](ε)− 2αg(zt(ε))2

)
≤

n∑
t=1

(
εt(g(zt(ε))− v0

t [g, ε](ε))
)

+
n∑
t=1

(
εtv

0
t [g, ε](ε)− αv0

t [g, ε](ε)2
)

=
n∑
t=1

(
εt(g(zt(ε))− vNt [g, ε](ε)

)
+

n∑
t=1

N∑
k=1

εt
(
vkt [g, ε](ε)− vk−1

t [g, ε](ε)
)

+
n∑
t=1

(
εtv

0
t [g, ε](ε)− αv0

t [g, ε](ε)2
)
.

By Cauchy-Schwartz, the first term is upper bounded by nβN ≤ 1. The second term above is upper
bounded by

N∑
k=1

n∑
t=1

εt
(
vkt [g, ε](ε)− vk−1

t [g, ε](ε)
)
≤

N∑
k=1

sup
wk∈Wk

n∑
t=1

εtw
k
t (ε),

where Wk is a set of differences of trees for levels k and k − 1 (see (Rakhlin et al., 2015, Proof of
Theorem 3)). Finally, the third term is controlled by

n∑
t=1

(
εtv

0
t [g, ε](ε)− αv0

t [g, ε](ε)2
)
≤ sup
v∈V0

n∑
t=1

(
εtvt(ε)− αv2

t (ε)
)
.

The probability expression in the statement of the lemma can now be upper bounded by

P
(

N∑
k=1

sup
wk∈Wk

n∑
t=1

εtw
k
t (ε) + sup

v∈V0

n∑
t=1

(
εtvt(ε)− αv2

t (ε)
)

− logN2(γ)
α

− c
∫ γ

1/n

√
n logN2(δ)dδ > τ

)
.

In view of the inequality

√
72

N∑
k=1

βk

√
n logN2(βk) ≤ 12

√
2
∫ γ

1/n

√
n logN2(δ)dδ,

this probability can be further upper bounded by

P
(

N∑
k=1

sup
wk∈Wk

n∑
t=1

εtw
k
t (ε) + sup

v∈V0

n∑
t=1

(
εtvt(ε)− αv2

t (ε)
)

− logN2(γ)
α

−
√

72
N∑
k=1

βk

√
n logN2(βk) > τ

)
.

Define a distribution p on {1, . . . , N} by pk = βk
√
n logN2(βk)∑N

k=1 βj
√
n logN2(βj)

. Then the probability above can
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be upper bounded by

P
(
∃k ∈ [N ] s.t. sup

wk∈Wk

n∑
t=1

εtw
k
t (ε)−

√
72βk

√
n logN2(βk) >

τpk
2

∨ sup
v∈V0

n∑
t=1

(
εtvt(ε)− αv2

t (ε)
)
− logN2(γ)

α
>
τ

2

)

≤
N∑
k=1

P
(

sup
wk∈Wk

n∑
t=1

εtw
k
t (ε)−

√
72βk

√
n logN2(βk) >

τpk
2

)

+ P
(

sup
v∈V0

n∑
t=1

(
εtvt(ε)− αv2

t (ε)
)
− logN2(γ)

α
>
τ

2

)
.

The second term can be upper bounded using Chernoff method by

∑
v∈V0

P
(

n∑
t=1

(
εtvt(ε)− αv2

t (ε)
)
− logN2(γ)

α
>
τ

2

)

≤ N2(γ) exp
(
−ατ2 − logN2(γ)

)
≤ exp

(
−ατ2

)
,

while the first sum of probabilities can be upper bounded by

N∑
k=1

∑
wk∈Wk

P
(

n∑
t=1

εtw
k
t (ε)−

√
72βk

√
n logN2(βk) >

τβk
√
n logN2(βk)

2
∑N
k=1 βk

√
n logN2(βk)

)
. (6.7)

For any k, the tail probability above is controlled by Hoeffding-Azuma inequality as

P

 n∑
t=1

εtw
k
t (ε) > βk

√
n logN2(βk)

(
6
√

2 + τ

2
∑N
k=1 βk

√
n logN2(βk)

)2


≤ exp

− 1
18 logN2(βk)

(
6
√

2 + τ

2
∑N
k=1 βk

√
n logN2(βk)

)2


≤ exp (−4 logN2(βk)) exp

− τ2

18
(
2
∑N
k=1 βk

√
n logN2(βk)

)2

 ,
because 1

n

∑n
t=1w

k
t (ε)2 ≤ 3β2

k for any ε by triangle inequality (see Rakhlin et al. (2015)). Then the
double sum in (6.7) is upper bounded by

Γ exp

− τ2

18
(
2
∑N
k=1 βk

√
n logN2(βk)

)2

 ,
where Γ ≥

∑N
k=1N2(βk)−2. This upper bound can be further relaxed to

Γ exp

− τ2

2
(
12
∫ γ

1/n
√
n logN2(δ)dδ

)2

 .
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Since N = log2(2γn), we may take

Γ =
log2(2γn)∑
k=1

N2(γ2−k)−2.

Proof of Corollary 6. Let N2(γ) := N2(G, γ, z). Observe that

2

√√√√2 logn logN2(γ/2)
(

n∑
t=1

g2(zt(ε)) + 1
)

= inf
α>0

{
logn logN2(γ/2)

α
+ 2α

(
n∑
t=1

g2(zt(ε)) + 1
)}

.

Furthermore, the optimal value of α is√
(logn) (logN2(γ/2))
2(
∑n
t=1 g

2(zt(ε)) + 1) ,

which is a number between d` =
√

(logn)(logN2(γ/2))
2(n+1) and du =

√
(logn) (logN2(γ/2)) as long as

N2(γ/2) > 1. With this we get

sup
g∈G

γ∈[n−1,1]

[
n∑
t=1

εtg(zt(ε))− 4

√√√√2(logn) (logN2(γ/2))
(

n∑
t=1

g2(zt(ε)) + 1
)

−24
√

2 logn
∫ γ

1/n

√
n logN2(δ)dδ + 2 logn

]

≤ sup
g∈G

γ∈[n−1,1],α∈[d`,du]

[
n∑
t=1

εtg(zt(ε))−
2(logn) (logN2(γ/2))

α
− 4α

n∑
t=1

g2(zt(ε))

−24
√

2 logn
∫ γ

1/n

√
n logN2(δ)dδ − 2 logn

]
.

(6.8)

The case of γ ∈ [1/n, 2/n) will be considered separately. Let us assume γ ≥ 2/n. We now discretize
both α and γ by defining αi = 2−(i−1)du and γj = 2jn−1, i, j ≥ 1. We go to an upper bound by
mapping each α to αi or αi/2, depending on the direction of the sign. Similarly, we map γ to either
γi or 2γi. The upper bound becomes

max
i,j

sup
g∈G

n∑
t=1

(
εtg(zt(ε))− 2αig2(zt(ε))

)
− (2 logn)

(
logN2(γj)

αi
+ 12

√
2
∫ γj

1/n

√
n logN2(δ)dδ + 1

)
.

Given the doubling nature of αi and γj , the indices i, j are upper bounded by O(logn). Now define
a collection of random variables indexed by (i, j)

Xi,j = sup
g∈G

n∑
t=1

εtg(zt(ε))− 2αig2(zt(ε))

and constants
Bi,j = logN2(γj)

αi
+ 12
√

2
∫ γj

1/n

√
n logN2(δ)dδ + 1.
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Lemma 10 establishes that

P(Xi,j −Bi,j > τ) ≤ Γ exp
(
− τ2

2σ2
j

)
+ exp

(
−αiτ2

)

where σj = 12
√

2
∫ γj

1
n

√
n logN2(δ)dδ and Γ as specified in Lemma 10. Whenever δ-entropy grows

as δ−p, σj ≤ 12
√

2
√
n, ensuring log(σj/σ1) ≤ log(n). Further, we can take 1 ≤ Γ ≤ log(2n).

Proposition 11 is used with a sequence of random variables, but we can easily put the pairs (i, j)
into a vector of size at most log2(n)2. Observe that si = αi/2, (Bi,jsi)−1 ≤ 2, σj/Bi,j ≤ 1,
s1/si ≤

√
2(n+ 1). Then, by taking σ̄ = min{1/Γ, σ1} and s̄ = s1,

θki,j = max
{
σj
Bi,j

√
2 log(σj/σ̄) + 4 log(ki,j), (Bi,jsi)−1 log

(
k2
i,j(s̄/si)

)}
+ 1

≤ max
{√

2 log(n) + 2 log(log(2n)) + 4 log(ki,j), 2 log
(
k2
i,j

√
2(n+ 1)

)}
+ 1

where ki,j = (logn) · (i− 1) + j. This choice of the multiplier ensures

Emax
i,j

{
Xi,j − θki,jBi,j

}
≤ 3Γσ̄ + 4α−1

1 ≤ 7

and θi,j is shown to be upper bounded by 2 logn. Hence,

E
[

sup
g∈G,γ

n∑
t=1

εtg(zt(ε))− 4

√√√√2 logn logN2(γ/2)
(

n∑
t=1

g2(zt(ε)) + 1
)

−24
√

2 logn
∫ γ

1
n

√
n logN2(δ)dδ

]
≤ 7 + 2 logn.

Now, consider the case γ ∈ [1/n, 2/n). We upper bound (6.8) by

max
i

sup
g∈G

n∑
t=1

(
εtg(zt(ε))− 2αig2(zt(ε))

)
− (2 logn)

( logN2(1/n)
αi

+ 1
)
,

which is controlled by setting γ = 1/n in Lemma 10. This case is completed by invoking Proposition 11
as before.

Proof of Corollary 7. Assume N > e and let C > 0. We first note that

inf
α>0


C log

(√
C logN
α

)
logN

α
+ α

(
n∑
t=1

g2(zt(ε)) + e

logN

)
≤ 2 log

(
logN

n∑
t=1

g2(z(ε)) + e

)√√√√C(logN
n∑
t=1

g2(z(ε)) + e

)
,
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with the inequality obtained using α? =
√

C logN∑n

t=1 g
2(z(ε))+e/ logN , which is a number between d` :=√

C logN
n+e/logN and du :=

√
C
e logN . Consequently,

sup
g∈G

n∑
t=1

εtg(zt(ε))− 2 log
(

logN
n∑
t=1

g2(z(ε)) + e

)√√√√C(logN
n∑
t=1

g2(z(ε)) + e

)

≤ sup
g∈G

α∈[d`,du]

[
n∑
t=1

εtg(zt(ε))− α
n∑
t=1

g2(zt(ε))−
C logN

α
log

(√
C logN
α

)]
.

Let L =
⌈
log2

(√
n logN

e + 1
)

+ 1
⌉
. We discretize the range of α by defining αi = du2−(i−1) for

i ∈ [L]. The following upper bound holds:

sup
g∈G
i∈[L]

[
n∑
t=1

εtg(zt(ε))−
αi
2

n∑
t=1

g2(zt(ε))−
C logN
αi

log
(√

C logN
αi

)]
.

Define a collection of random variables indexed by i ∈ [L] with

Xi = sup
g∈G

[
n∑
t=1

εtg(zt(ε))−
αi
2

n∑
t=1

g2(zt(ε))
]

and let Bi = 4 logN
αi

. Applying Lemma 10 with γ = 1/n establishes

P(Xi −Bi > τ) ≤ exp
(
−αiτ8

)
.

We now set si = αi/8 and s̄ = s1, and apply Proposition 11, yielding

E{Xi −Biθi} ≤
16
√
e

C
.

It remains to relate this quantity to the rate we are trying to achieve. Note that our bound on
P(Xi−Bi > τ) has a pure exponential tail, so we only need to consider θi = (Bisi)−1 log(i2(s̄/si))+1.
Taking C ≥ 32 and observing that (Bisi)−1 ≤ 2, we obtain

θi = (Bisi)−1 log(i2(s̄/si)) + 1 ≤ 2 log(i2(s̄/si)) + 1 = 2 log(i22i−1) + 1 ≤ 2 log (i22i)

≤ C

4 log
(√

C logN
αi

)
.

Finally, we have

sup
g∈G
i∈[L]

[
n∑
t=1

εtg(zt(ε))−
αi
2

n∑
t=1

g2(zt(ε))−
32 logN
αi

log
(√

32 logN
αi

)]
≤ E{Xi −Biθi} ≤

√
e

2 ≤ 1.
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Proof of Corollary 8. We prove the corollary for the convex Lipschitz loss setting from
(6.3).
Our starting point to proving the bounds is Lemma 7, equation (6.2). To show achievability
it suffices to show that

E
ε

sup
f∈F

n∑
t=1

εtf(xt(ε))−K1Rn(F(2R(f))) log3/2 n

(
1 +

√
log

(Rn(F(2R(f)))
Rn(F(R(1)))

)
+ log(log(2R(f)))

)
≤ K2ΓRn(F(1)) log3/2 n

where Γ is the constant that will be inherited from Lemma 9. Define Ri = 2i and note that
since the Rademacher complexity of the class F(R) is non-decreasing with R,

sup
f∈F

n∑
t=1

εtf(xt(ε))−K1Rn(F(2R(f))) log3/2 n

(
1 +

√
log

(Rn(F(2R(f)))
Rn(F(1))

)
+ log(log(2R(f)))

)

= sup
R≥1

sup
f∈F(R)

n∑
t=1

εtf(xt(ε))−K1Rn(F(2R)) log3/2 n

(
1 +

√
log

(Rn(F(2R))
Rn(F(1))

)
+ log(log(2R))

)

≤ max
i∈N

sup
f∈F(Ri)

n∑
t=1

εtf(xt(ε))−K1Rn(F(Ri)) log3/2 n

(
1 +

√
log

(Rn(F(Ri))
Rn(F(1))

)
+ log(log(Ri))

)
.

(6.9)

Denote a shorthand Cn =
√

96 log3(en2) and Di
n = Rn(F(Ri)). Now note that by Lemma 9

we have that for every i and every θ > 1,

Pε
(

sup
f∈F(Ri)

∣∣∣∣∣
n∑
t=1

εtf(xt(ε))
∣∣∣∣∣ > 8 (1 + θCn) ·Di

n)
)
≤ 2Γe−3θ2

.

Let Xi = supf∈F(Ri) |
∑n
t=1 εtf(xt(ε))| and let Bi = 8 (1 + Cn) ·Di

n. In this case rewriting the
above one sided tail bound appropriately (with θ = 1 + τ/(8CnDi

n)) we see that for any
τ > 0,

P(Xi −Bi > τ) ≤ 2Γ
e3 exp

(
− τ 2

28 log3(en2)R2
n(F(Ri))

)
.

This establishes one-sided subgaussian tail behavior. Now applying Proposition 11 and setting
θi as suggested by the proposition we conclude that

Eε

[
max
i∈N

sup
f∈F(Ri)

n∑
t=1

εtf(xt(ε)−K1Rn(F(Ri)) log3/2 n

(
1 +

√
log

(Rn(F(Ri))
Rn(F(1))

)
+ log(log(Ri))

)]
≤ K2ΓRn(F(1)) log3/2 n.

This concludes the proof by appealing to Eq. (6.9).

Proof of Achievability for Example 8.

Lemma 11. The following bound is achievable in the setting of Example 8:

B(f) = D
√
n
(

8‖f‖
(

1 +
√

log(2‖f‖) + log log(2‖f‖)
)

+ 12
)
.

96



This proof specializes the proof of Corollary 8 to the regime where Lemma 8 applies.

Recall our parameterization of F : F(R) = {f ∈ F : ‖f‖ ≤ R}. It was shown in Rakhlin et al.
(2012) that Cn(F(R)) := 2RD

√
n is an upper bound for Rn(F(R)). We consider the rate

B(f) = 2Cn(F(2R(f)))
1 +

√√√√log
(
Cn(F(2R(f)))
Cn(F(1))

)
+ log log2(2R(f))

.
We begin by applying Lemma 7, Eq. (6.3), yielding

Vol
n (F ,B)

≤ sup
y

E
ε

sup
f

2
n∑
t=1

εt〈f,yt(ε)〉 − 2Cn(F(2R(f)))
(

1 +
√

log
(Cn(F(2R(f)))
Cn(F(1))

)
+ log log2(2R(f))

)
.

We now discretize the range of R via Ri = 2i. By analogy with the proof of Corollary 8 we
get the upper bound,

sup
y

E
ε

sup
i∈N

 sup
f∈F(Ri)

2
n∑
t=1

εt〈f,yt(ε)〉 − 2Cn(F(Ri))
1 +

√√√√log
(
Cn(F(Ri))
Cn(F(1))

)
+ log log2(Ri)


= sup

y
E
ε

sup
i∈N

[
2Ri

∥∥∥∥∥
n∑
t=1

εtyt(ε)
∥∥∥∥∥
?

− 4D
√
nRi

√
log(Ri) + log(i)

]
.

Fix a Y-valued tree y and define a set of random variables Xi = 2Ri‖
∑n
t=1 εtyt(ε)‖?. Let

Bi = 2D
√
nRi. Lemma 8 shows that

P(Xi −Bi ≥ τ) ≤ 2 exp
(
− τ 2

8D2R2
in

)
.

So we have σi = 2DRi

√
n, and it will be sufficient to set σ̄ = 2D

√
n. Since our tail bound is

purely sub-gaussian, we apply Proposition 11 with θi = σi
Bi

√
2 log(σi/σ̄) + 4 log(i)+1, yielding

the following bound:

sup
y

E
ε

sup
i∈N

[
2Ri

∥∥∥∥∥
n∑
t=1

εtyt(ε)
∥∥∥∥∥
?

− 4D
√
nRi

√
log(Ri) + log(i)

]
≤ 12D

√
n.

Proof of Achievability for Example 11. Unfortunately, the general symmetrization
proof in Lemma 7 does not suffice for this problem. In what follows we use a more specialized
symmetrization technique to prove the lemma.
Lemma 12. For any countable class of experts, when we consider F to be the class of all
distributions over the set of experts, the following adaptive bound is achievable:

B(f ; y1:n) =
√√√√50 (KL(f |π) + log(n))

n∑
t=1
〈f, yt〉+ 50 (KL(f |π) + log(n)) + 1.
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To show that the rate is achievable we need to show that Vol
n ≤ 0. Since each ŷt is a

distribution over experts and we are in the linear setting, we do not need to randomize in the
definition of the minimax value. Let us use the shorthand

C(f) = KL(f |π) + log(n),

and take constants K1, K2 to be determined later. Define

Vol
n (F ,B)

= ⟪ inf
ŷt∈∆

sup
yt∈Y
⟫
n

t=1

 n∑
t=1
〈ŷt, yt〉 − inf

f∈∆


n∑
t=1
〈f, yt〉+

√√√√KC(f)
n∑
t=1

E
i∼f
〈ei, yt〉2 +

√
K ′C(f)


.

Using repeated minimax swap, this expression is equal to

⟪ sup
pt∈∆(Y)

inf
ŷt∈∆
⟫
n

t=1

 n∑
t=1
〈ŷt, yt〉 − inf

f∈∆


n∑
t=1
〈f, yt〉+

√√√√KC(f)
n∑
t=1

E
i∼f
〈ei, yt〉2 +

√
K ′C(f)




= ⟪ sup
pt∈∆(Y)

E
yt∼pt
⟫
n

t=1

 n∑
t=1

inf
ŷt∈∆

Eyt∼pt [〈ŷt, yt〉]

− inf
f∈∆


n∑
t=1
〈f, yt〉+

√√√√KC(f)
n∑
t=1

E
i∼f
〈ei, yt〉2 +

√
K ′C(f)


.

By sub-additivity of square-root we pass to an upper bound,

⟪sup
pt

E
yt∼pt
⟫
n

t=1

 sup
f∈F

n∑
t=1

inf
ŷt∈∆

Eyt∼pt [〈ŷt, yt〉]− Eei∼f [〈ei, yt〉]

−

√√√√C(f)
(
K

n∑
t=1

E
i∼f

[
〈ei, yt〉2

]
+K ′C(f)

).
We now split the square root according to the formula

√
ab = infα>0 {a/2α + αb/2} and note

the range of the optimal value:

1√
n
≤ α∗ =

√√√√ C(f)(
K
∑n
t=1 Ei∼f

[
〈ei, yt〉2

]
+K ′C(f)

) ≤ 1√
K ′
. (6.10)

Let us discretize the interval by setting αi = 1√
K′

2−(i−1) for i = 1, . . . , N and note that we
only need to take N = O(log(n)) elements. Write I = {α1, . . . , αN}. Observe that

√
ab = inf

α>0
{a/2α + αb/2} ≥ min

α∈I
{a/4α + αb/2} .

For the rest of the proof, the maximum over α is taken within the set I. We have

Vol
n (F ,B) ≤ ⟪sup

pt
E

yt∼pt
⟫
n

t=1

 sup
f∈∆,α

n∑
t=1

inf
ŷt∈∆(F)

Eyt [〈ŷt, yt〉]− Eei∼f [〈ei, yt〉]

− α

2

(
K

n∑
t=1

E
i∼f

[
〈ei, yt〉2

]
+K ′C(f)

)
− C(f)

4α

. (6.11)
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Dropping some negative terms, we upper bound the last expression by

⟪sup
pt

E
yt∼pt
⟫
n

t=1

 sup
f∈F ,α

n∑
t=1
〈f,E [y′t]− yt〉 −

Kα

2

n∑
t=1

E
i∼f

[
〈ei, yt〉2

]
− C(f)

4α

.
Adding and subtracting α

4
∑n
t=1 Ey′t

[
Ei∼f

[
〈ei, y′t〉

2
]]

, the expression is at most

⟪sup
pt

E
yt∼pt
⟫
n

t=1

 sup
f∈F ,α

n∑
t=1
〈f,E [y′t]− yt〉 −

Kα

4

n∑
t=1

E
i∼f

[
〈ei, yt〉2

]
− Kα

4

n∑
t=1

E
y′t

[
E
i∼f

[
〈ei, y′t〉

2]]

+Kα4

(
n∑
t=1

Ey′t
[
E
i∼f

[
〈ei, y′t〉

2]]− E
i∼f

[
〈ei, yt〉2

])
− C(f)

4α

.
Using Jensen’s inequality to pull out expectations, we obtain an upper bound,

⟪sup
pt

E
yt,y′t∼pt

⟫
n

t=1

 sup
f∈F ,α

n∑
t=1
〈f, y′t − yt〉 −

Kα

4

n∑
t=1

E
i∼f

[
〈ei, yt〉2

]
− Kα

4

n∑
t=1

E
i∼f

[
〈ei, y′t〉

2]

+Kα4

(
n∑
t=1

E
i∼f

[
〈ei, y′t〉

2]− E
i∼f

[
〈ei, yt〉2

])
− C(f)

4α

.
Next, we introduce Rademacher random variables:

⟪sup
pt

E
yt,y′t∼pt

E
εt
⟫
n

t=1

 sup
f∈F ,α

n∑
t=1

εt

(
〈f, y′t − yt〉+ Kα

4

(
E
i∼f

[
〈ei, y′t〉

2]− E
i∼f

[
〈ei, yt〉2

]))

− Kα

4

n∑
t=1

E
i∼f

[
〈ei, yt〉2

]
− Kα

4

n∑
t=1

E
i∼f

[
〈ei, y′t〉

2]− C(f)
4α


≤ ⟪sup

yt
E
εt
⟫
n

t=1

 sup
f∈F ,α

n∑
t=1

εt

(
2〈f, yt〉+ Kα

2 E
i∼f

[
〈ei, yt〉2

])
− Kα

2

n∑
t=1

E
i∼f

[
〈ei, yt〉2

]
− C(f)

4α

.
Moving to the tree notation, we have

sup
y

E
ε

sup
f∈F ,α

[
n∑
t=1

εt

(
2〈f,yt(ε)〉+ Kα

2 E
i∼f

[
〈ei,yt(ε)〉2

])

− Kα

2

n∑
t=1

E
i∼f

[
〈ei,yt(ε)〉2

]
− KL(f |π)

4α − log n
4α

]
.

Let the tree y be fixed. Note that the convex conjugate of 1
α

KL(f‖π) is given by Ψ∗(X) :=
1
α

log (Ei∼π exp (α〈ei, X〉)), so we can express the last quantity as

E
ε

max
α

 1
4α log

(
E
i∼π

exp
(

n∑
t=1

εt
(
8α〈ei,yt(ε)〉+ 2Kα2〈ei,yt(ε)〉2

)
− 2Kα2〈ei,yt(ε)〉2

))

− log n
4α

.
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Define a random variable indexed by α:

Xα = 1
4α log

(
Ei∼π

[
exp

(∑n
t=1 εt

(
8α〈ei,yt(ε)〉+ 2Kα2〈ei,yt(ε)〉2

)
− 2Kα2〈ei,yt(ε)〉2

)])
.

Our goal is to bound E [maxα{Xα − log n/4α}]. Observe that the following chain of inequali-
ties holds:

P(Xα > t)
≤ inf

λ
E
[
eλXα−λt

]
= inf

λ

Eε
(
E
i∼π

exp
(

n∑
t=1

εt
(
8α〈ei,yt(ε)〉+ 2Kα2〈ei,yt(ε)〉2

)
− 2Kα2〈ei,yt(ε)〉2

)) λ
4α

e−λt


≤ E

ε
E
i∼π

exp
(

n∑
t=1

εt
(
8α〈ei,yt(ε)〉+ 2Kα2〈ei,yt(ε)〉2

)
− 2Kα2〈ei,yt(ε)〉2

)
e−4αt

≤ E
ε
E
i∼π

exp
(

n∑
t=1

(
8α〈ei,yt(ε)〉+ 2Kα2〈ei,yt(ε)〉2

)2
− 2Kα2〈ei,yt(ε)〉2

)
e−4αt

≤ E
ε
E
i∼π

exp
(

n∑
t=1

4α2(4 +Kα)2〈ei,yt(ε)〉2 − 2Kα2〈ei,yt(ε)〉2
)
e−4αt.

The above term is upper bounded by exp(−4αt) as soon as 4α2(4 + Kα)2 ≤ 2Kα2, which
happens when

0 < α ≤ (
√
K/2− 4)/K. (6.12)

In view of (6.10), we know that α ≤ 1√
K′
. Thus, to ensure (6.12), it is sufficient to take

K = 50 and K ′ = 502. Other choices lead to a different balance of constants. We thus have

P(Xα > t) ≤ exp (−4αt) .

Now that we have the tail bound, we appeal to Proposition 11. Setting si = 4αi and
Bi = 1/4αi, we obtain that

E
[

max
i=1,...,N

{
Xαi −

log(n)
4α

}]
≤ 10.

6.6 Chapter Notes

This chapter is based on Foster et al. (2015).
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Part III

New Guarantees for Adaptive
Learning
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Chapter 7

Overview of Part III

In Part III of this thesis we apply the tools developed in Part II to four concrete settings
of practical importance: online supervised learning, online convex optimization, statistical
learning, and contextual bandits. For each setting we introduce a new type of adaptive
learning guarantee, then use the equivalence framework to both develop efficient algorithms
and characterize fundamental limits for the new guarantee.

• Online supervised learning: Adaptivity to feature distribution. In Chapter 8
we introduce a family of algorithms that adapt to the feature distribution in online
learning with the property that their performance is sequence optimal, meaning no
algorithm can obtain better statistical performance on any sequence. The achievability
of this type of rate is characterized through a new connection to the theory of UMD
Banach spaces.

• Online convex optimization: Adaptivity to model. In Chapter 9 we introduce the
first universal family of parameter-free algorithms for online and stochastic optimization.
These algorithms learn the best learning rate or regularization parameter for the data,
alleviating the need for parameter tuning.

• Logistic regression: Adaptivity to misspecification. In Chapter 10 we develop
new theory and algorithms for logistic regression in the presence of model misspecifica-
tion. We design a new efficient improper learning algorithm for logistic regression that
exhibits a doubly-exponential improvement in dependence certain parameters. This

Setting Adaptivity Achievability Algorithm
Online Learning Feature distribution Theorem 12 Theorem 11

Online Optimization Model Lemma 16/Theorem 22 Theorem 22
Statistical Learning Misspecification Theorem 35 Theorem 32
Contextual Bandits Label distribution Theorem 41 Theorem 42/43

Table 7.1: Summary of new adaptive learning algorithms and limits.
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provides a positive resolution to a variant of the COLT 2012 open problem of McMahan
and Streeter (2012), and also leads to the resolution of two open questions regarding
adaptivity to margin in bandits and boosting. We use the minimax achievability
framework to characterize the extent to which these improvements extend to general
model classes.

• Contextual bandits: Adaptivity to margin. Chapter 11 introduces margin theory
for contextual bandit learning. The new theory serves as a complete contextual
bandit analogue of the classical margin theory in statistical learning, and permits the
development of algorithms for sequential decision making that are more sample-efficient
and computationally efficient when data is nice.

These results are summarized in Table 7.1.
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Chapter 8

Online Supervised Learning

In this chapter we develop a new family of algorithms for the online learning setting with regret
against any data sequence bounded by the empirical Rademacher complexity of the sequence.
In the agnostic statistical learning setting, empirical Rademacher complexity (alongside the
empirical covering numbers) is a fundamental quantity that adapts to the complexity of a
benchmark function class F projected onto the observed dataset. We characterize when
adaptivity based on empirical Rademacher complexity can be achieved in the more challenging
online setting, and we derive efficient algorithms to achieve this.

Compared to the classical statistical setting, adaptivity to empirical Rademacher complexity
is not always possible in the online setting. Achievability depends on refined properties of
the benchmark class F , and standard algorithms such as empirical risk minimization do not
suffice to achieve this adaptivity. To characterize when this type of adaptive regret bound is
achievable, we establish a connection to the theory of decoupling inequalities for martingales
in Banach spaces. When the hypothesis class is a set of linear functions bounded in some
norm, the empirical Rademacher complexity regret bound is achievable if and only if the
norm satisfies certain decoupling inequalities (specifically, UMD inequalities) for martingales.
In an instance of the equivalence framework of Part II, Donald Burkholder’s celebrated
geometric characterization of decoupling inequalities and UMD spaces (Burkholder, 1984)
states that such an inequality holds if and only if there exists a Burkholder function satisfying
a strengthening of the restricted concavity property called zig-zag concavity. Our online
learning algorithms are efficient in terms of queries to this function.

We realize our general theory by giving new efficient and adaptive algorithms for linear
classes including `p norms, group norms, and reproducing kernel Hilbert spaces, as well as
adaptive regret guarantees for general classes based on empirical covering numbers. The
empirical Rademacher complexity regret bound implies—when used in the i.i.d. setting—a
data-dependent complexity bound for excess risk after online-to-batch conversion.

104



8.1 Background

We focus on the online supervised learning task (Protocol 2) for the special case of real-valued
predictions. To recap, the learner receives data (x1, y1), . . . , (xn, yn) in a stream. At time t they
receive an instance xt and must predict yt given the instance and the previous observations
(x1, y1, ) . . . , (xt−1, yt−1). The learner’s prediction, denoted ŷt, is evaluated against yt according
to a loss function `(ŷt, yt); for classification this is typically a convex surrogate for the zero-one
loss `01(ŷ, y) = 1{ŷ 6= y} such as the hinge loss `hinge(ŷ, y) = max{0, 1− ŷ · y}. The learner’s
overall performance is measured in terms of their regret against a benchmark function class
F :

n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt). (8.1)

In the statistical setting, each pair (xt, yt) is drawn i.i.d. from some joint distribution D. In
this case, a bound on (8.1) is appealing because it immediately translates to an excess loss
bound for the batch statistical learning setting after online-to-batch conversion. At the other
extreme is the fully adversarial setting, where no generating assumptions on the data are
made. This chapter develops methods that enjoy optimal guarantees in both worlds.

Our goal is to come up with prediction strategies that adapt to the “difficulty” of the sequence.
In the statistical setting, optimal excess risk behavior has long been understood through
empirical process theory and, in particular, Rademacher averages (Bartlett and Mendelson,
2003). Empirical Rademacher averages were shown to be an attractive data-dependent
measure of complexity that can be used for model selection and for estimating the excess
risk of empirical minimizers. The question considered in this chapter is whether there exist
prediction strategies such that empirical Rademacher averages control the per-sequence regret
(8.1). It turns out that the empirical Rademacher average is the best sequence-based measure
of complexity one can hope for.

Let us formally define the empirical Rademacher complexity of the class F :

R̂(F , x1:n) = E
ε

sup
f∈F

n∑
t=1

εtf(xt), (8.2)

where the Rademacher sequence ε ∈ {±1}n is drawn uniformly at random and x1:n =
(x1, . . . , xn). The questions studied in this chapter are:

• When does there exist a strategy (ŷt) such that
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt) ≤ D(F , n) · R̂(F , x1:n) (8.3)

for every sequence x1:n, y1:n?

• What is the best constant D(F , n)?

• When can the strategy (ŷt)t≥1 be efficiently computed?
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We provide a characterization of when the bound (8.3) is achievable, and, furthermore, develop
efficient algorithms based on a new set of techniques. This is achieved using a specialized
version of the equivalence developed in Part II. Interestingly, the Burkholder functions that
arise from the equivalence in this section satisfy a stronger form of restricted concavity called
“zig-zag concavity” (see Figure 8.1). The main message of this chapter is that this special
function can be used for algorithmic purposes and to answer the above questions.

We begin our analysis by showing that the empirical Rademacher complexity R̂(F , x1:n)
enjoys a rather strong form of instance optimality that we term “sequence optimality”. This
result is a simple consequence of the equivalence of martingale inequalities and adaptive
prediction guarantees.
Lemma 13 (Sequence Optimality). Let ` be the absolute, hinge, or linear loss and let F
be any class of functions with value bounded by 1. Let B(x1:n) be a data-dependent regret
bound for which there exists a strategy (ŷt) guaranteeing

n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt) ≤ B(x1:n) ∀x1:n, y1:n. (8.4)

Then
R̂(F , x1:n) ≤ B(x1:n) ∀x1:n.

The same result holds for the zero-one loss if we restrict F and (ŷt) to have range {±1}.

Lemma 13 reveals that no data-dependent regret bound can improve upon R̂(F , x1:n) beyond
the factor D(F , n). As we will soon show, the question of identifying D(F , n) is an extremely
rich one. When one restricts to linear function classes, this question is deeply tied to theory
of Banach spaces with the unconditional martingale difference (UMD) property.

For the majority of this chapter we assume that F is a class of linear functions indexed by a
unit ball; Section 8.6 considers the general case. For the linear case, we assume that xts lie in
the unit ball of a separable Banach space (B, ‖·‖) and

F = {x 7→ 〈w, x〉 | w ∈ B?, ‖w‖? ≤ 1},

with ‖·‖? being the dual norm and B? the dual space. In this case,

R̂(F , x1:n) = E
ε

sup
‖w‖?≤1

n∑
t=1

εt〈w, xt〉 = E
ε

∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥.
Consider the euclidean setting, where F is the unit `2 ball. It is known that gradient descent
with an adaptive step size yields a regret bound of order

√∑n
t=1‖xt‖

2 for any sequence.1
Khintchine’s inequality gives a further upper bound of order Eε‖

∑n
t=1 εtxt‖. Hence, adaptive

gradient descent answers the questions posed earlier for the specific case of linear functions
indexed by Euclidean ball. This is one of two cases known to us where the bound of R̂(F , x1:n)
was available without using the techniques developed in this chapter.2

1See discussion in Chapter 5.
2The other example is the `∞ ball, attained by diagonal AdaGrad (Duchi et al., 2011).
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8.2 Preliminaries

Let (B, ‖·‖) be a separable Banach space and (B?, ‖·‖?) denote its dual. This chapter focuses
on the real-valued online supervised learning setting described in Section 2.3. Input instances
belong to some subset X ⊆ B and predictions ŷt are real valued (Ŷ = R). The outcomes
(yts) are selected from some abstract label space Y . Throughout the chapter we assume that
the loss `(ŷ, y) is convex and 1-Lipschitz in its first argument. We also assume that there
exists some bounded domain [−B,B] such that for all y ∈ Y, ∃ŷ ∈ [−B,B] such that the
derivative with respect to the first argument `′(ŷ, y) = 0 (that is, minimum is achievable in
the compact set). We call such a loss function well-behaved. We remark that this bound B
never explicitly appears in our results, and its only purpose is to enable application of the
minimax theorem (Section 2.6).

Additional Notation For p ∈ (1,∞), let p′ = p/(p − 1) denote its conjugate, and
p? = max{p, p′}. For a matrix X ∈ Rd×d, let Xi,· denote the ith row and X·j denote the jth
column. We define its (p, q) group norm as ‖X‖p,q = (∑i∈[d]‖Xi,·‖pq)

1/p = ‖(‖Xi,·‖q)i∈[d]‖p.
For a set A ⊆ Rd, assumed to be symmetric, the atomic norm with respect to A is given by
‖x‖A = min{α | x ∈ α · conv(A)}.

We use the convention that both ε ∈ {±1}n and σ ∈ {±1}n denote Rademacher sequences.

8.3 Burkholder Method and Zig-Zag Concavity

Let us propose a simple schema for designing algorithms to achieve (8.3). It will turn out
that considering this scheme naturally leads to us to decoupling inequalities for Banach
space-valued martingales via Burkholder’s method. We begin by observing that by convexity
of the loss function,

`(ŷt, yt)− `(〈w, xt〉, yt) ≤ `′(ŷt, yt) · (ŷt − 〈w, xt〉) (8.5)

and hence, denoting the derivative by `′t = `′(ŷt, yt),
n∑
t=1

`(ŷt, yt)− inf
‖w‖?≤1

n∑
t=1

`(〈w, xt〉, yt) ≤
n∑
t=1

ŷt · `′t +
∥∥∥∥∥
n∑
t=1

`′txt

∥∥∥∥∥. (8.6)

Rather than directly aiming for the adaptive bound of empirical Rademacher averages in
(8.3), we shall aim for R̂(F , x1:n, `

′
1:n) := Eε‖

∑n
t=1 εt`

′
txt‖, a quantity that is always tighter

than R̂(F , x1:n) = Eε‖
∑n
t=1 εtxt‖ because ` is 1-Lipschitz.

Consequently, to achieve the adaptive regret bound (8.3), it suffices to exhibit a strategy for
which the quantity

n∑
t=1

ŷt · `′t +
∥∥∥∥∥
n∑
t=1

`′txt

∥∥∥∥∥−D · E
ε

∥∥∥∥∥
n∑
t=1

εt`
′
txt

∥∥∥∥∥
is at most zero on every data sequence.

107



The challenge in analyzing this quantity is that the function z 7→ ‖A+ z‖ −D‖B + εz‖ is
neither convex nor concave. Virtually all potential functions used in online learning are convex
and the absence of such a property makes it difficult to bound the growth under possible
outcomes for the gradient `′t. Thankfully, the Burkholder method suggests an extremal
function that enjoys more favorable analytical properties.
Proposition 12. Suppose there exists a function U : B×B→ R satisfying

1. U(x, x′) ≥ ‖x‖ −D‖x′‖.

2. U is zig-zag concave: z 7→ U(x+z, x′+ εz) is concave for all x, x′ ∈ B and ε ∈ {±1}.

3. U(0, 0) ≤ 0.

Then the simple gradient-based strategy

ŷt = − d

dα
E
ε1:t

U
(
t−1∑
s=1

`′sxs + αxt,
t−1∑
s=1

εs`
′
sxs + εtαxt

)∣∣∣∣∣
α=0

(8.7)

achieves the empirical Rademacher complexity regret bound (8.3).

We remark that this strategy is horizon-independent whenever U does not depend on n
(which is the case for examples we consider). Furthermore, one may avoid re-drawing the
random signs and, hence, the computation time is simply the evaluation of the derivative
of U. As a consequence, the sufficient statistics for adapting to the empirical Rademacher
complexity are simply the sequence ∑ `′txt and its sign-flipped cousin ∑ εt`

′
txt.

The full description this strategy, which we call the ZigZag algorithm is given in Section 8.5. We
postpone this discussion for a moment in favor of connecting the zig-zag concave Burkholder
functions to other properties of the Banach space via the equivalence.

8.4 Zig-Zag Functions, Regret, and UMD Spaces

What have we gained by reducing our problem to finding a U function? We will now show
that U exists if and only if (B, ‖·‖) is an Unconditional Martingale Difference (UMD) space.
Informally, in a UMD space lengths of martingales are comparable to those of random walks
with independent increments (see Definition 4). We call U a Burkholder function in reference
to Donald Burkholder’s central result characterizing UMD spaces in terms of the existence of
these functions (Burkholder, 1984).

In Proposition 12 we assumed that the Burkholder function U satisfies U(x, x′) ≥ ‖x‖−D‖x′‖.
We will soon see that it is often easier to find an efficiently computable zig-zag concave
function Up that, as before, satisfies Up(0, 0) ≤ 0, but the first requirement in Proposition 12
is replaced with

Up(x, x′) ≥ ‖x‖p −Dp
p‖x′‖

p

for some p > 1 (i.e. p 6= 1). However, the simple observation that for any number a > 0,
a = 1

p
infη>0{ηap + (p − 1)η−1/(p−1)} will allow us to algorithmically use a Up function for

108



any p to obtain the desired regret bound R̂ (this is described in detail in Section 8.5). This
motivates our complete Burkholder function definition:
Definition 3. A function UB

p : B×B→ R is Zig-Zag for (‖·‖, p,Dp) if

1. UB
p (x, x′) ≥ ‖x‖p −Dp

p‖x′‖
p.

2. UB
p is zig-zag concave: The function z 7→ UB

p (x + z, x′ + εz) is concave for all
x, x′ ∈ B and ε ∈ {±1}.

3. UB
p (0, 0) ≤ 0.3

For concreteness, here is a simple example for the scalar case: The function

UR
2 (x, x′) = |x|2 − |x′|2

is Zig-Zag for (|·|, 2, 1). The reader can easily verify that this function is zig-zag concave by
observing that UR

2 (x+ z, x′± z) is in fact linear in z. Perhaps the most famous U function is
Burkholder’s construction for general powers in the scalar case: For p ∈ (1,∞) the function

UR
p (x, x′) = αp(|x| − βp|x′|)(|x|+ |x′|)p−1

,

is a (|·|, p, βp) Burkholder function upper bounding |x|p − βpp |x′|
p for appropriate αp, βp.

8.4.1 When Does a Zig-Zag Concave Burkholder Function Exist?

It turns out that the most common Banach spaces used in machine learning settings — such
as `p spaces, group norms, Schatten-p classes, and operator norms — all happen to be UMD
spaces, and that each UMD space comes with its own U function. This leaves us with the
exciting prospect of using their corresponding U functions to develop new adaptive online
learning algorithms with improved data-dependent regret bounds. Without further ado, let
us define a UMD Banach space:
Definition 4. A Banach space (B, ‖ · ‖) is called UMDp for some 1 < p < ∞, if there is
a constant Cp such that for any finite B-valued martingale difference sequence (Xt)nt=1 in
Lp(B) and any fixed choice of signs (εt)nt=1 (where each εt ∈ {±1}),

E
∥∥∥∥∥
n∑
t=1

εtXt

∥∥∥∥∥
p

≤ Cp
p E

∥∥∥∥∥
n∑
t=1

Xt

∥∥∥∥∥
p

. (8.8)

The space (B, ‖·‖) is called UMD1 if there is a constant C1 such that

E sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εtXt

∥∥∥∥∥ ≤ C1 E sup
τ≤n

∥∥∥∥∥
τ∑
t=1

Xt

∥∥∥∥∥ . (8.9)

Burkholder (1984) proved the following geometric characterization of UMD spaces in terms
of existence of appropriate zig-zag concave U functions.4

3This condition is without loss of generality.
4Burkholder (1984) does not work with U functions directly but rather an equivalent property called

ζ-convexity. The U function presentation first appeared in Burkholder (1986). See Hytönen et al. (2016) or
Osekowski (2012) for a modern exposition.

109



Theorem 7 (Hytönen et al. (2016), Theorem 4.5.6). For a Banach space (B, ‖ · ‖), the
following are equivalent:

1. B is UMDp with constant Cp.

2. There exists Burkholder function UB
p : B×B 7→ R for (‖·‖, p,Cp).

Theorem 7 is strengthened considerably by the following fact:
Theorem 8. Let p ∈ (1,∞). If UMDp holds with constant Cp, then

• For all q ∈ (1,∞), UMDq, holds with constant Cq ≤ 100
(
q
p

+ q′

p′

)
Cp.

• UMD1 holds with C1 = O(Cp).

Furthermore, if UMD1 holds with constant C1, then for all p ∈ (1,∞) there is some constant
C′p for which UMDp holds.

With these properties of UMD spaces established, we proceed to state our main theorem on
achieving the R̂ regret bound in these spaces.
Theorem 9. Let (B, ‖·‖) satisfy UMDp with constant Cp for any p ∈ [1,∞). Then there
exists some randomized strategy achieving the regret bound:

E
[
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)
]
≤ O

(
Cp EE

ε
sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷt, yt)xt

∥∥∥∥∥
)

(8.10)

≤ O

(
Cp E

(
log
(

max
t∈[n]
‖xt‖n

)
· E
ε

∥∥∥∥∥
n∑
t=1

εt`
′(ŷt, yt)xt

∥∥∥∥∥
))
(8.11)

≤ O

(
Cp E

(
log
(

max
t∈[n]
‖xt‖n

)
· E
ε

∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
))

. (8.12)

This shows that a bound on Cp for any p gives D(F , n) ≤ Cp in (8.3), up to an extra additive
log n factor5.

An interesting feature of this theorem is that there are multiple ways through which it can be
proven. In Section 8.7 it is proven purely non-constructively by plugging the UMD inequality
(8.9) into the minimax analysis framework developed in Foster et al. (2015). In Section 8.5
it is proven constructively by using the existence of the U function to exhibit a particular
strategy for the learner.

Let us remark that the bound in (8.10) has the desirable property of adapting to scale, in
that it does not require an a-priori upper bound on the data norms maxt∈[n]‖xt‖.

With Theorem 9 in mind, we finally state bounds on Cp for classes of interest.
5All of the logn factors incurred in this paper arise when passing from bounds of the form E supτ≤n Fτ

to those of the form EFn for some random process (Ft). This is notable technical issue with most martingale
inequalities involving the L1(B) norm, including for example Doob’s well-known maximal inequality.
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Theorem 10. The following UMD constants hold:

• (R, |·|): Cp = p? − 1 ∀p ∈ (1,∞).
• (Rd, ‖·‖p), p ∈ (1,∞): Cp = p? − 1.
• (Rd, ‖·‖1/‖·‖∞): C2 = O(log d).
• (Rd, ‖·‖A/‖·‖A?): C2 = O(log|A|).

• (Rd×d, ‖·‖Sp), p ∈ (1,∞): Cp = O((p?)2).
• (Rd×d, ‖·‖σ/‖·‖Σ): C2 = O(log2 d).
• (Rd×d, ‖·‖p,q), p, q ∈ (1,∞): Cp = O(p?q?).
• (H, ‖·‖H) for Hilbert space H: C2 = 1.

8.4.2 Efficient Burkholder Functions

Burkholder’s geometric characterization, Theorem 7, implies existence of a Burkholder
function UB

p whenever a space (B, ‖·‖) has UMD constant Cp. Unfortunately, the generic U
function construction (see Hytönen et al. (2016), Theorem 4.5.6) is not efficiently computable;
it is expressed in terms of a supremum over all martingale difference sequences. However, the
construction of concrete U functions has been an active area of research in the three decades
since Burkholder’s original construction. This is because one can exhibit a U function to
certify that a space is UMD for a specific constant Cp, and discovering sharp UMD constants
is of general interest to the analysis community (Osekowski, 2012).

Let us begin by stating Burkholder’s optimal U function construction for the scalar setting.
This function was originally obtained by solving a particular partial differential equation.
This function is graphed in Figure 8.1.
Example 12 (|·|p, Hytönen et al. (2016), Theorem 4.5.7). For any p ∈ (1,∞), the function

UR
p (x, y) := αp(|x| − βp|y|)(|x|+ |y|)p−1 (8.13)

is Zig-Zag for (|·|, p, βp) , where αp = p
(
1− 1

p?

)p−1
, βp = p? − 1. βp is the sharpest constant

possible.

Observe that all of the Burkholder function properties (Definition 3) are preserved under
addition. This leads us to a construction for `p norms in the vector setting, which inherits
the optimal constants from Burkholder’s scalar construction.
Example 13 (`p norm).

U`p
p (x, y) :=

∑
i∈[d]

UR
p (xi, yi) (8.14)

is a Burkholder function for (‖·‖pp, p, βp), with βp as in Example 12. U`p
p can be computed in

time O(d).
Example 14 (Weighted `2 norm). Let ‖x‖A =

√
〈x,Ax〉 for some PSD matrix A. Then

U`2,A
2 (x, y) := U `2

2 (A1/2x,A1/2y)

is a Burkholder function for (`2,A, 2, 1). U`2,A
2 can be computed in time O(d2).

Another useful construction extends Burkholder’s scalar function to general Hilbert spaces.
This is useful as it applies even to infinite dimensional spaces such as RKHS.
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Figure 8.1: UR
p (x, x′) (blue) and |x|p − βpp |x′|

p (orange) for p = 3.

Example 15 (General Hilbert Space, Hytönen et al. (2016), Theorem 4.5.14). Let H be
some Hilbert space whose norm will be denoted ‖·‖H.

UHp (x, y) := αp(‖x‖H − βp‖y‖H)(‖x‖H + ‖y‖H)p−1 (8.15)

is a Burkholder function for (‖·‖H, p, βp) for each p ∈ (1,∞), where αp and βp, and are as in
Example 12. This function works for all Hilbert spaces, even those of infinite dimension. For
p = 2 this function and its derivatives can be implemented efficiently using the Representer
Theorem.

We can lift the former construction to a construction for group norms in the same fashion as
in our construction for `p norms.
Example 16 ((p, 2) Group Norm). In this example we consider group norms over matrices
in Rd×d. The function,

U(p,2)
p (x, y) :=

∑
i∈[d]

U`2
p (x, y),

where U`2,p is the general Hilbert space Burkholder function (8.15), is a Burkholder function
for (‖·‖(p,2), p, βp). U(p,2)

p can be computed in time O(d2).

Group norms are used in multi-task learning. Furthermore, Example 16 works not just for
Rd×d, but more generally for Rd ×H for any Hilbert space H. This makes it well-suited to
multiple kernel learning tasks.

As we will show in the sequel, there are a number of algorithmic tricks we can use to adapt
to the empirical Rademacher complexity even when we do not exactly have a zig-zag concave
Burkholder function for the class of interest.

8.5 Algorithm and Applications

Recall that our goal is to design algorithms whose regret is bounded by R̂(F , x1:n, `
′
1:n) =

Eε‖
∑n
t=1 εt`

′
txt‖. We now present an algorithm, ZigZag (Algorithm 5), which efficiently

achieves a regret bound of this form whenever we have an efficient Burkholder function UB
p ,

even if p 6= 1.
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Algorithm 5 ZigZag
1: procedure ZigZag(Up, p, η) . Up is Zig-Zag for (‖·‖, p, β). η > 0 is the learning rate.
2: for time t = 1, . . . , n do
3: Let Gt(α) = Eσt∈{±1}

η
p
Up

(∑t−1
s=1 `

′
sxs + αxt,

∑t−1
t=1 εs`

′
sxs + σtαxt

)
.

4: Predict ŷt = −G′t(0). . More generally, use the supergradient.
5: Draw independent Rademacher εt ∈ {±1}.
6: end for
7: end procedure

Theorem 11. Denote the prediction of Algorithm 5 as ŷε1:t−1
t to make the dependence on the

sequence (εt)t≤n explicit. Algorithm 5 enjoys the regret bound,

E
ε

[
n∑
t=1

`(ŷε1:t−1
t , yt)− inf

f∈F

n∑
t=1

`(f(xt), yt)−
1
p

(
ηβp

∥∥∥∥∥
n∑
t=1

εt`
′
txt

∥∥∥∥∥
p

+ 1
p′ − 1η

−(p′−1)
)]
≤ 0. (8.16)

A few remarks are in order. A naive application of the Burkholder algorithm would yield a
bound

E
ε

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)
]
≤ 1
p

(
ηβp E

ε

∥∥∥∥∥
n∑
t=1

εt`
′
txt

∥∥∥∥∥
p

+ 1
p′ − 1η

−(p′−1)
)
, (8.17)

which falls short of the goal of achieving R̂ for the following reason. Observe that for any
p > 1,

x1/p = 1
p

inf
η>0

(
ηx+ 1

p′ − 1η
1−p′

)
:= inf

η>0
Ψη,p(x). (8.18)

Recall that η > 0 is a parameter of Algorithm 5. (8.18) combined with (8.17) suggest
that if we chose the optimal η in hindsight, the regret of ZigZag would be bounded by
p

√
Eε‖

∑n
t=1 εt`

′
txt‖

p. However, this bound is always worse than R̂(F , x1:n, `
′
1:n) via Jensen’s

inequality, and is indeed sub-optimal for `p norms. Luckily, (8.16) reveals that for ZigZag, the
Rademacher sequence (εt)t≤n used by the algorithm and the Rademacher sequence appearing
in the regret bound are one and the same, which allows us to adapt η to ‖∑n

t=1 εt`
′
txt‖ for a

particular playout of the sequence (εt)t≤n to get the desired empirical Rademacher complexity
bound. This tuning of η via doubling is stated in the next result.
Lemma 14. Define

Φ(xt1:t2 , , `
′
t1:t2 , εt1:t2) = βp sup

t1≤a≤b≤t2

∥∥∥∥∥
b∑
t=a

εt`
′
txt

∥∥∥∥∥
p

.

Consider the following strategy:

1. Choose η0 = (β · p)−p for p ≥ 2 and η0 = 1 for p < 2. Update with ηi = 2−
i

p′−1η0.

2. In phase i, which consists of all t ∈ {si, . . . , si+1 − 1}, play Algorithm 5, ZigZag, with
learning rate ηi.

113



3. Take s1 = 1, sN+1 = n + 1, and si+1 = inf{τ | ηiΦ(xsi:τ−1, `
′
si:τ−1, εsi:τ−1) > η

−(p′−1)
i },

where N is the index of the last phase (note that whether t = si+1 can be tested using
only information available to the learner at time t).

This strategy achieves

E
ε

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)
]

(8.19)

≤ O
(
β2 log2 n E

ε,ε′

∥∥∥∥∥
n∑
t=1

ε′t`
′
txt

∥∥∥∥∥+ min
{

logn+ (p · β)
p
p−1 , βp logn

})
. (8.20)

Remark 1. In the above bound, (xt) and (`′t) may adapt to the sequence (εt) drawn by the
algorithm (unless the adversary is oblivious), but may not adapt to (ε′t).

8.5.1 `p norms

We now specialize our generic algorithm to the important special case of `p norms. We use E
(without subscript) to denote the expectation with respect to the learner’s randomization.
Example 17. Fix p ∈ (1,∞). Let ŷt be the strategy produced by ZigZag (Algorithm 5)
using the Burkholder function U`p

p from Example 13 with the learning rate tuning strategy
from Lemma 14. This strategy achieves

E
[
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)
]
≤ O

EE
ε

∥∥∥∥∥
n∑
t=1

εt`
′
txt

∥∥∥∥∥
p

· (p?)2 log2 n+ (p?)2 logn

. (8.21)

This algorithm serves as a generalization of AdaGrad to all powers of p. If we take p = 2, the
result recovers the regret bound for full matrix AdaGrad (Duchi et al., 2011) up to logarithmic
factors:

E
[
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)
]
≤ Õ

E
√√√√ n∑
t=1
‖xt‖2

2

. (8.22)

We can also recover the regret bound for diagonal AdaGrad (Duchi et al., 2011) by taking
p = 1 + 1/ log d:

E
[
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)
]
≤ Õ

E ∑
i∈[d]
‖x1:n,i‖2

. (8.23)

Here x1:n,i denotes the ith row of the data matrix (x1, x2, . . . , xn) ∈ Rd×n

There is also a direct construction of a U function for `1 due to Osekowski (2016), which is
stated in Section 8.7 as Example 20. Using this function we will achieve (8.23), but without
having to use the learning rate tuning strategy, and with only O(log d) factors in the regret
bound instead of O(log 2d).
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8.6 Beyond Linear Function Classes: Necessary and
Sufficient Conditions

The aim this chapter was to analyze conditions for the existence of adaptive methods that
enjoy per-sequence empirical Rademacher complexity as the regret bound. In this quest, we
introduced the UMD property as a necessary condition. In the present section, we consider
arbitrary, possibly nonlinear function classes F ⊆ [−1, 1]X and show that a closely related
“probabilistic” UMD property offers both a necessary and sufficient condition.

For this section we restrict ourselves to absolute loss `abs(ŷ, y) = |ŷ − y| and assume that
Y = [−1, 1].
Theorem 12. Let F ⊂ [−1, 1]X be any class of predictors. The following statements are
equivalent:

1. There exists a learning algorithm and constant B such that the following regret bound
holds against any adversary:

n∑
t=1

`abs(ŷt, yt)− inf
f∈F

n∑
t=1

`abs(f(xt), yt) ≤ B E
ε

sup
f∈F

n∑
t=1

εtf(xt) + b.

2. For any X valued tree x = (x1, . . . ,xn) where each xt : {±1}t−1 → X , there exists
constant C such that

E
ε

[
sup
f∈F

n∑
t=1

εtf(xt(ε1:t−1))
]
≤ C E

ε,ε′

[
sup
f∈F

n∑
t=1

ε′tf(xt(ε1:t−1))
]

+ c, (8.24)

where ε = (ε1, . . . , εn) and ε′ = (ε′1, . . . , ε′n) are independent Rademacher random vari-
ables.

Moreover, B = Θ(C) and b = Θ(c). More generally, condition 2 implies condition 1 for any
loss ` that is 1-Lipschitz and well-behaved as in Section 8.2, for any choice of Y.

8.6.1 Function Classes with the Generalized UMD Property

We now give examples of function classes that satisfy the generalized UMD inequality (8.24).
Example 18 (Kernel Classes). Let H be a Reproducing Kernel Hilbert Space with kernel K
such that supx∈X

√
K(x, x) ≤ B, and let F = {f ∈ H | ‖f‖H ≤ 1}. Then there are constants

K1, K2 such that the generalized UMD property (8.24) holds with

E
ε

sup
f∈F

n∑
t=1

εtf(xt(ε1:t−1)) ≤ K1 log(Bn) · E
ε,ε′

sup
f∈F

n∑
t=1

ε′tf(xt(ε1:t−1)) +K2.

The next example is that of homogenous polynomial classes under an injective tensor norm.
The full description of this setting is deferred to Section 8.7.
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Example 19 (Homogeneous Polynomials). Consider homogeneous polynomials of degree 2k,
with coefficients under the unit ball of the norm (‖·‖{1,...,k},{k+1,...,2k})? in (Rd)⊗2k. Then there
exist constants K1, K2 such that the generalized UMD property (8.24) holds with

E
ε

sup
f∈F

n∑
t=1

εtf(xt(ε1:t−1)) ≤ K1k
2 log2(d) log(Bn) · E

ε,ε′
sup
f∈F

n∑
t=1

ε′tf(xt(ε1:t−1)) +K2k
2 log2(d).

8.6.2 Necessary Versus Sufficient Conditions

When we take F to be the unit ball of the dual norm ‖·‖? as in previous sections, the
inequality in (8.24) becomes:

E
ε

∥∥∥∥∥
n∑
t=1

εtxt(ε1:t−1)
∥∥∥∥∥ ≤ C E

ε,ε′

∥∥∥∥∥
n∑
t=1

ε′tεtxt(ε1:t−1)
∥∥∥∥∥ . (8.25)

This condition is sometimes referred to as a probabilistic one-sided UMD inequality for Paley-
Walsh martingales (Hytönen et al., 2016). Comparing the condition to the UMD1 inequality
(8.9) one observes three differences: The Rademacher sequence ε′ is drawn uniformly rather
than being fixed, we only consider Paley-Walsh martingales (trees), and there is no supremum
over end times. The supremum in (8.9) does not present a significant difference, as it can be
removed from UMD1 at a multiplicative cost of O(log n). The randomization over ε′ is more
interesting. It turns out that if in addition to (8.25) we require the opposite direction of this
inequality to hold, i.e.

E
ε,ε′

∥∥∥∥∥
n∑
t=1

ε′tεtxt(ε1:t−1)
∥∥∥∥∥ ≤ C ′ E

ε

∥∥∥∥∥
n∑
t=1

εtxt(ε1:t−1)
∥∥∥∥∥ ,

then this is equivalent to the full UMD property (8.9) up to the presence of the supremum
(Hytönen et al., 2016, Theorem 4.2.5). Thus, (8.25) can be thought of as a one-sided version
of the UMD inequality.

There are indeed classes for which one-sided UMD inequality holds but the full UMD
property does not. A result due to Hitczenko (1994) shows that there is a mild separation
between these conditions even in the scalar setting:6
Theorem 13 (Hitczenko (1994)). There exists a constant K independent of p such that for
all p ∈ [1,∞),

E
ε

∣∣∣∣∣
n∑
t=1

εtxt(ε1:t−1)
∣∣∣∣∣
p

≤ Kp E
ε,ε′

∣∣∣∣∣
n∑
t=1

ε′tεtxt(ε1:t−1)
∣∣∣∣∣
p

. (8.26)

When p = 1 this result is exactly the generalized UMD inequality (8.24), and for p > 1 it
gives a one-sided version of the UMDp condition. This bound is quantitatively stronger than
what one would obtain from the UMDp property, since (Burkholder, 1984) shows that the
full two-sided UMDp condition requires K ≥ p? − 1. However, we remark that the gap here
is only in logarithmic factors, and that the separation between the one-sided and full UMD
properties is very mild for all examples we are aware of.

6See also Hitczenko (1993); Cox and Veraar (2007, 2011).
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8.6.3 Application: Empirical Covering Number Bounds

Having developed online learning algorithms for which regret is bounded by the empirical
Rademacher complexity, we are in the appealing position of being able to apply empirical
process tools designed for the statistical setting to derive tight regret bounds for the adver-
sarial setting. A powerful tool to derive instance-dependent upper bounds on the empirical
Rademacher complexity is chaining.
Definition 5 (Empirical Cover). For a hypothesis class F : X → R, data sequence x1:n, and
α > 0, a set V ⊆ Rn is called an empirical covering with respect to `p, p ∈ [1,∞), if

∀f ∈ F ∃v ∈ V s.t.
(

1
n

n∑
t=1

(f(xt)− vt)p
)1/p

≤ α. (8.27)

The set V is a cover with respect to `∞ if ∀f ∈ F ∃v ∈ V s.t. |f(xt)− vt| ≤ α ∀t ∈ [n].

We let the empirical covering number Np(F , α, x1:n) denote the size of the smallest α-empirical
cover for F on x1:n with respect to `p.

Because our task is simply to obtain bounds on the empirical Rademacher complexity on a
particular sequence x1:n, we can obtain regret bounds that depend on the data-dependent
empirical covering number defined above, instead of a worst-case covering number. Such
bounds have proved elusive in the adversarial setting, where most existing results are based
on worst-case covering numbers (e.g. Rakhlin et al. (2010)). In particular, we derive two
regret bounds based on the classical covering number bound (Pollard, 1990) and Dudley
Entropy Integral bound (Dudley, 1967) for Rademacher complexity.
Theorem 14 (Empirical covering bound). For any class F ⊆ [−1,+1]X satisfying the
generalized UMD inequality (8.24) with constant C, there exists a strategy (ŷt) that attains

n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt) ≤ O
(
C · inf

α>0

{
αn+

√
logN1(F , α, x1:n)n

})
. (8.28)

Theorem 15 (Empirical Dudley Entropy bound). For any class F ⊆ [−1,+1]X satisfying
the generalized UMD inequality (8.24) with constant C, there exists a strategy (ŷt) that attains

n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt) ≤ O
(
C · inf

α>0

{
α · n+

∫ 1

α

√
logN2(F , δ, x1:n)ndδ

})
. (8.29)

More generally, since our upper bounds depend on the empirical Rademacher complexity
conditioned on the data x1:n, more powerful techniques — such as Talagrand’s generic chaining

— may be applied to derive even tighter data-dependent covering bounds than those implied
by (8.29).
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8.7 Detailed Proofs and UMD Tools

8.7.1 Detailed Proofs

Proof of Lemma 13. Recall that `hinge(ŷ, y) = max{0, 1− ŷ · y}, `abs(ŷ, y) = |ŷ − y|,
`lin(ŷ, y) = −ŷ · y. Fix a sequence x1:n, and let yt = εt where ε ∈ {±1}n is a Rademacher
sequence. By our hypothesis, we have

B(x1:n) ≥ E
ε

[
n∑
t=1

`(ŷt, εt)− inf
f∈F

n∑
t=1

`(f(xt), εt)
]
≥ E

ε

[
− inf

f∈F

n∑
t=1

`(f(xt), εt)
]
.

For the linear loss, observe that since ŷt cannot react to εt, we immediately have

E
ε

[
n∑
t=1

`(ŷt, εt)− inf
f∈F

n∑
t=1

`(f(xt), εt)
]

= E
ε

[
− inf

f∈F

n∑
t=1

`(f(xt), εt)
]

= R̂(F , x1:n).

For the absolute and hinge losses, we will use two facts. First, since |f(xt)| ≤ 1, both losses
satisfy `(f(xt), εt) = 1− f(xt)εt. Second, without any assumption on the range of ŷt, one has
`(ŷt, εt) ≥ 1− ŷtεt. Therefore, whenever ` is the absolute or hinge loss, one has

E
ε

[
n∑
t=1

`(ŷt, εt)− inf
f∈F

n∑
t=1

`(f(xt), εt)
]
≥ E

ε

[
n∑
t=1

(1− ŷtεt)− inf
f∈F

n∑
t=1

(1− f(xt)εt)
]

= E
ε

[
n∑
t=1
−ŷtεt − inf

f∈F

n∑
t=1
−f(xt)εt

]

= E
ε

[
− inf

f∈F

n∑
t=1
−εtf(xt)

]
.

The above is equal to R̂(F , x1:n) as in the linear loss case, so we have shown that for each
loss our hypothesis implies R̂(F , x1:n) ≤ B(x1:n).

Proof of Proposition 12. See proof of Theorem 11.

8.7.2 Proofs from Section 8.4

Proof of Theorem 8. For the case p, q ∈ (1,∞), we appeal to Theorem 17.

Now consider the case q = 1, and suppose UMDp holds for p ∈ (1,∞) with Cp. Then by
Theorem 17, C2 ≤ 200Cp. Finally, by Theorem 18, C1 ≤ 108C2 ≤ 108 · 200Cp.

For the converse direction, we appeal to Pisier (2011), Remark 8.2.4.
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Proof of Theorem 9. Fix some C > 0 to be chosen later. Define the minimax value for
the a game where the learner’s goal is to achieve the adaptive regret bound:

Vol
n =

⟪sup
xt

inf
qt∈∆[−B,+B]

sup
yt∈Y

E
ŷt∼qt
⟫
n

t=1

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)− C E
ε

sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷt, yt)xt

∥∥∥∥∥
]
,

where we have adopted the shorthand Vol
n := Vol

n (F ,B). As is routine by now, there always
exists some randomized strategy making predictions in [−B,+B] whose regret is bounded by

C EE
ε

sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷt, yt)xt

∥∥∥∥∥+ Vol
n .

We will show that for the value of C given in the theorem statement one has Vol
n ≤ 0. To

begin, observe that in view of the linearization inequality (8.6), the minimax value Vol
n is

bounded by

⟪sup
xt

inf
qt∈∆[−B,+B]

sup
yt∈Y

E
ŷt∼qt
⟫
n

t=1

[
n∑
t=1

`′(ŷt, yt)ŷt +
∥∥∥∥∥
n∑
t=1

`′(ŷt, yt)xt

∥∥∥∥∥− C E
ε

sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷt, yt)xt

∥∥∥∥∥
]
.

Using the minimax theorem as in Section 2.6,7 the last expression is equal to

⟪sup
xt

sup
pt∈∆(Y)

inf
ŷt∈[−B,+B]

E
yt∼pt
⟫
n

t=1

[
n∑
t=1

`′(ŷt, yt)ŷt +
∥∥∥∥∥
n∑
t=1

`′(ŷt, yt)xt

∥∥∥∥∥− C E
ε

sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷt, yt)xt

∥∥∥∥∥
]
.

Choose ŷ?t = arg minf Eyt∼pt [`(f, yt)]. By the assumption on the loss, the minimizer is
obtained in [−B,B] and so Eyt∼pt [`′(ŷ?t , yt)] = 0. With this (sub)optimal choice, we obtain
an upper bound of

⟪sup
xt

sup
pt∈∆(Y)

E
yt∼pt
⟫
n

t=1

[
n∑
t=1

`′(ŷ?t , yt)ŷ?t +
∥∥∥∥∥
n∑
t=1

`′(ŷ?t , yt)xt
∥∥∥∥∥− C E

ε
sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷ?t , yt)xt

∥∥∥∥∥
]
.

Since ŷ?t is the population minimizer, we have Eyt∼pt [`′(ŷ?t , yt)ŷ?t ] = Eyt∼pt [`′(ŷ?t , yt)]ŷ?t = 0.
The preceeding expression is thus equal to

⟪sup
xt

sup
pt∈∆(Y)

E
yt∼pt
⟫
n

t=1

[∥∥∥∥∥
n∑
t=1

`′(ŷ?t , yt)xt
∥∥∥∥∥− C E

ε
sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷ?t , yt)xt

∥∥∥∥∥
]

≤ ⟪sup
xt

sup
pt∈∆(Y)

E
yt∼pt
⟫
n

t=1

[
sup
τ≤n

∥∥∥∥∥
τ∑
t=1

`′(ŷ?t , yt)xt
∥∥∥∥∥− C E

ε
sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷ?t , yt)xt

∥∥∥∥∥
]
.

Observe that we may rewrite the above expression as

sup
x

sup
P

E
y1:n∼P

[
sup
τ≤n

∥∥∥∥∥
τ∑
t=1

`′(ŷ?t (p1:t), yt)xt(y1:t−1)
∥∥∥∥∥− C E

ε
sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷ?t (p1:t), yt)xt(y1:t−1)

∥∥∥∥∥
]
,

7A word of caution: we use the assumption on the loss that there exists a minimizer for every label within
some bounded domain precisely so that we can now use minimax theorem restricting ŷt’s to be in bounded
domain.

119



where P = (p1, . . . , pn) is a sequence of conditional distributions over y1:n, x is a sequence
of mappings xt : Y t−1 → X , and ŷ?t (p1:t) is the minimizer policy described above. For any
fixed choice for P and x, we have that (`′(ŷ?t (p1:t), yt)xt(y1:t−1))t≤n is a martingale difference
sequence, because the choice of ŷ?t guarantees E[`′(ŷ?t (p1:t), yt)xt(y1:t−1) | y1:t−1] = 0.

Therefore, if UMD1 holds with constant C1, we have (by choosing a uniform random sign
sequence in Definition 4) that for any fixed P , x,

E sup
τ≤n

∥∥∥∥∥
τ∑
t=1

`′(ŷ?t (p1:t), yt)xt(y1:t−1)
∥∥∥∥∥ ≤ C1 EE

ε
sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷ?t (p1:t), yt)xt(y1:t−1)

∥∥∥∥∥.
This implies that the inequality holds for the supremum over P and x, so we have

Vol
n ≤ ⟪sup

xt
sup

pt∈∆(Y)
E

yt∼pt
⟫
n

t=1

[
C1 E

ε
sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷ?t , yt)xt

∥∥∥∥∥− C E
ε

sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷ?t , yt)xt

∥∥∥∥∥
]
.

Thus, if we take C ≥ C1:

≤ 0.

We have established that there exists a strategy (ŷt) guaranteeing

E
[
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)
]
≤ C1 EE

ε
sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εt`
′(ŷt, yt)xt

∥∥∥∥∥
Treating (`′(ŷt, yt)xt)t≤n as a fixed sequence, we may now apply Corollary 10 to remove the
supremum over end times:

≤ 2C1 log
(

max
t∈[n]
‖xt‖n

)
· E
ε

∥∥∥∥∥
n∑
t=1

εt`
′(ŷt, yt)xt

∥∥∥∥∥+ 2C1.

By the standard contraction argument for Rademacher complexity, since |`′| ≤ 1,

≤ 2C1 log
(

max
t∈[n]
‖xt‖n

)
· E
ε

∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥+ 2C1.

Finally, recall that by Theorem 8, C1 ≤ O(Cp).

Proof of Theorem 10. Most of the proofs in this theorem use the following fact: If (Xt)t≤n
is a martingale difference sequence, its restriction to a subset of coordinates is also a martingale
difference sequence. This allows one to prove the deterministic UMD property (8.8) for
complex spaces by building up from simpler spaces.

• (R, |·|): Burkholder (1984) shows that for all p ∈ (1,∞), Cp = p? − 1.
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• (Rd, ‖·‖p), for p ∈ (1,∞):

E
X

∥∥∥∥∥
n∑
t=1

εtXt

∥∥∥∥∥
p

p

=
∑
i∈[d]

E
X

∣∣∣∣∣
n∑
t=1

εtXt[i]
∣∣∣∣∣
p

≤ (p? − 1)
∑
i∈[d]

E
X

∣∣∣∣∣
n∑
t=1

Xt[i]
∣∣∣∣∣
p

= (p? − 1)E
X

∥∥∥∥∥
n∑
t=1

Xt

∥∥∥∥∥
p

p

.

(8.30)
The middle inequality here uses the UMDp constant for the scalar case.

• (Rd, ‖·‖p), for p ∈ {1,∞}: We will start with `∞. Set p = log d, and observe that for `p,
by Theorem 17, `p has C2 = O(Cp) = O(p?) (the second bound is from the previous
example). Then we have, for any sequence of signs,

E
∥∥∥∥∥
n∑
t=1

εtXt

∥∥∥∥∥
2

∞
≤ E

∥∥∥∥∥
n∑
t=1

εtXt

∥∥∥∥∥
2

p

≤ O(p?)E
∥∥∥∥∥
n∑
t=1

Xt

∥∥∥∥∥
2

p

≤ O(p?)E
(
d1/p

∥∥∥∥∥
n∑
t=1

Xt

∥∥∥∥∥
∞

)2

.

Since d1/ log d = O(1), the last expression is at most

O(p?)E
∥∥∥∥∥
n∑
t=1

Xt

∥∥∥∥∥
2

∞
.

Finally, note that p? = O(log d).
The same argument works for the `1 norm using p = 1 + 1/ log d. Alternatively, the
constant can be deduced from duality using Theorem 19. That these constants are
optimal follows from Hytönen et al. (2016), Proposition 4.2.19.

• (Rd, ‖·‖A/‖·‖A?). Let us focus on ‖·‖A? . Assume A = {a1, . . . , aN}. Observe that

‖x‖A? = max{〈y, x〉 | y ∈ conv(A)}

= max

∑
i∈[N ]

θi〈ai, xi〉 | θ ∈ ∆(N)


Since we assumed A is symmetric:

=
∥∥∥(〈ai, xi〉)i∈[N ])

∥∥∥
∞

= ‖Ax‖∞, where A ∈ RN×d is the matrix of elements of A stacked as rows.

For any martingale difference sequence (Xt)t≤n, (AXt)t≤n is also a martingale difference.
Therefore, we can deduce the UMD2 property for ‖·‖A? from our result for ‖·‖∞. The
UMD2 property for ‖·‖A follows from Theorem 19.

• (Rd×d, ‖·‖Sp), for p ∈ (1,∞): Hytönen et al. (2016) Theorem 5.2.10 and Proposition
5.5.5.
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• (Rd×d, ‖·‖σ): C2 = O(log2 d). We will build up from the Schatten p-norms in the same
fashion as for the `p spaces. Let p = log d. For any sequence of signs,

E
∥∥∥∥∥
n∑
t=1

εtXt

∥∥∥∥∥
2

σ

≤ E
∥∥∥∥∥
n∑
t=1

εtXt

∥∥∥∥∥
2

Sp

.

Using Theorem 17 to get C2 ≤ O((p?)2) for Sp:

≤ O((p?)2)E
∥∥∥∥∥
n∑
t=1

Xt

∥∥∥∥∥
2

Sp

≤ O((p?)2)E
(
d1/p

∥∥∥∥∥
n∑
t=1

Xt

∥∥∥∥∥
σ

)2

.

Since d1/ log d = O(1), the preceding expression is at most

O((p?)2)E
∥∥∥∥∥
n∑
t=1

Xt

∥∥∥∥∥
2

σ

.

Once again, p? ≤ log d. The constant for ‖·‖Σ follows from Theorem 19, since the trace
norm is dual to the spectral norm.

• (Rd×d, ‖·‖p,q), for p, q ∈ (1,∞): For any sequence of signs, we apply the UMD property
for `p row-wise:

E
∥∥∥∥∥
n∑
t=1

εtXt

∥∥∥∥∥
p

p,q

=
∑
i∈[d]

E
∥∥∥∥∥
n∑
t=1

εt(Xt)i·
∥∥∥∥∥
p

q

.

We know `q has Cq ≤ O(q?). By Theorem 17, this implies that Cp for `q has Cp ≤
O(p? · q?).

≤ O(p? · q?)
∑
i∈[d]

E
∥∥∥∥∥
n∑
t=1

(Xt)i·
∥∥∥∥∥
p

q

= O(p? · q?)E
∥∥∥∥∥
n∑
t=1

Xt

∥∥∥∥∥
p

p,q

.

• (H, ‖·‖H) for any Hilbert space H: See Example 15.

8.7.3 Proofs from Section 8.5

Proof of Theorem 11. We will show that the strategy achieves the regret bound

E
ε

[
n∑
t=1

`(ŷε1:t−1
t , yt)− inf

f∈F

n∑
t=1

`(f(xt), yt)−Ψη,p

(
βp
∥∥∥∥∥
n∑
t=1

εt`
′(ŷε1:t−1

t , yt)xt
∥∥∥∥∥
p)]
≤ 0. (8.31)

Our proof follows the same step-by-step minimax analysis as variants of the Burkholder
algorithm from previous chapters.
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Initial Condition The first step is to show that the Burkholder function upper bounds
that difference between regret and the desired regret bound. In view of (8.6),

n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)−Ψη,p

(
βp
∥∥∥∥∥
n∑
t=1

εt`
′(ŷt, yt)xt

∥∥∥∥∥
p)

≤
n∑
t=1

ŷt`
′
t +

∥∥∥∥∥
n∑
t=1

`′txt

∥∥∥∥∥−Ψη,p

(
βp
∥∥∥∥∥
n∑
t=1

εt`
′
txt

∥∥∥∥∥
p)

≤
n∑
t=1

ŷt`
′
t + Ψη,p

(∥∥∥∥∥
n∑
t=1

`′txt

∥∥∥∥∥
p)
−Ψη,p

(
βp
∥∥∥∥∥
n∑
t=1

εt`
′
txt

∥∥∥∥∥
p)

=
n∑
t=1

ŷt`
′
t + η

p

(∥∥∥∥∥
n∑
t=1

`′txt

∥∥∥∥∥
p

− βp
∥∥∥∥∥
n∑
t=1

εt`
′
txt

∥∥∥∥∥
p)

≤
n∑
t=1

ŷt`
′
t + η

p
Up

(
n∑
t=1

`′txt,
n∑
t=1

εt`
′
txt

)
.

Admissibility Condition At each time step t ∈ [n], we have the following recursive upper
bound on the cost to go

sup
xt

inf
ŷt

sup
`′t

E
εt

[
ŷt`
′
t + η

p
Up

(
t∑

s=1
`′sxs,

t∑
t=1

εs`
′
sxs

)]

= sup
xt

inf
ŷt

sup
`′t

[
ŷt`
′
t + E

εt

η

p
Up

(
t∑

s=1
`′sxs,

t∑
t=1

εs`
′
sxs

)]
= sup

xt
inf
ŷt

sup
`′t

[ŷt`′t +Gt(`′t)].

Plugging in the strategy specified by Algorithm 5, the last expression is at most

sup
xt

sup
`′t

[−G′t(0) · `′t +Gt(`′t)] ≤ sup
xt
Gt(0) = Up

(
t−1∑
s=1

`′sxs,
t−1∑
t=1

εs`
′
sxs

)
.

Finally, we have Up(0, 0) ≤ 0, and so the final value of the game is at most zero. This implies
that (8.31) is achieved.

Proof of Lemma 14. In what follows we will leave the dependence of ŷt, xt, `′t on ε1:t−1
implicit for notational convenience. We will handle this dependence at the end of the proof.
Assume N > 1. Otherwise, the algorithm’s regret is bounded as 2η−(p′−1)

1 = 4η−(p′−1)
0 . We

begin with the elementary upper bound

E
ε

[
n∑
t=1

`(ŷε1:t−1
t , yt)− inf

f∈F

n∑
t=1

`(f(xt), yt)
]

≤ E
ε

 N∑
i=1

si+1−1∑
t=si

`(ŷε1:t−1
t , yt)− inf

f∈F

si+1−1∑
t=si

`(f(xt), yt)
.
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Using the regret bound for Algorithm 5 (note that that algorithm has an anytime regret
guarantee) given by Theorem 11:

≤ E
ε

1
p

N∑
i=1

ηiβpp
∥∥∥∥∥∥
si+1−1∑
t=si

εt`
′
txt

∥∥∥∥∥∥
p

+ 1
p′ − 1η

−(p′−1)
i

.
Introducing a new supremum:

≤ E
ε

[
1
p

N∑
i=1

[
ηiΦ(xsi:si+1−1, `

′
si:si+1−1, εsi:si+1−1) + 1

p′ − 1η
−(p′−1)
i

]]
.

The doubling condition implies that ηiΦ(xsi:si+1−2, `
′
si:si+1−2, εsi:si+1−2) ≤ η

−(p′−1)
i . To use this

fact, observe that since ‖xt‖ ≤ 1, we have that for any C > 0,

ηiΦ(xsi:si+1−1, `
′
si:si+1−1, εsi:si+1−1)

= ηiβ
p
p sup
si≤a≤b≤si+1−1

∥∥∥∥∥
b∑
t=a

εt`
′
txt

∥∥∥∥∥
p

≤ ηi(1 + 1/C)pβpp sup
si≤a≤b≤si+1−2

∥∥∥∥∥
b∑
t=a

εt`
′
txt

∥∥∥∥∥
p

+ ηiC
pβpp .

For C = p:

≤ ηieΦ(xsi:si+1−2, εsi:si+1−2) + ηip
pβpp .

= eη
−(p′−1)
i + ηip

pβpp .

Returning to the regret bound, we have

≤ E
ε

[
1
p

N∑
i=1

[
eη
−(p′−1)
i + ηip

pβpp + 1
p′ − 1η

−(p′−1)
i

]]

≤ E
ε

[
e
N∑
i=1

η
−(p′−1)
i + ppβppηi

]

We will handle with the left-hand term first. Now observe that

ηN−1Φ(xsN−1:sN , `
′
sN−1:sN , εsN−1:sN ) > η

−(p′−1)
N−1 .

Rearranging further implies

η
−(p′−1)
N−1 ≤ Φ(xsN−1:sN , `

′
sN−1:sN , εsN−1:sN )1/p ≤ Φ(x1:n, `

′
1:n, ε1:n)1/p.

Finally, since η−(p′−1)
i = 2η−(p′−1)

i−1 ,

N∑
i=1

η
−(p′−1)
i = η

−(p′−1)
0

N∑
i=1

2i ≤ 2 · 2Nη−(p′−1)
0 ≤ 4Φ(x1:n, `

′
1:n, ε1:n)1/p = 4βp sup

1≤a≤b≤n

∥∥∥∥∥
b∑
t=a

εt`
′
txt

∥∥∥∥∥.
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For the second term, observe that ηi ≤ η0 for all i, so

N∑
i=1

ppβppηi ≤ ppβppη0 ·N.

Finally, by the invariant 2N−1η
−(p′−1)
0 ≤ Φ(x1:n, ε1:n)1/p we established earlier,

N ≤ log
(
Φ(x1:n, `

′
1:n, ε1:n)1/pη

(p′−1)
0

)
+ 1

Putting everything together, the regret is bounded as

E
ε

max
{

2eβp sup
1≤a≤b≤n

∥∥∥∥∥
b∑
t=a

εt`
′
txt

∥∥∥∥∥+ ppβppη0

(
log
(

sup
1≤a≤b≤n

∥∥∥∥∥
b∑
t=a

εt`
′
txt

∥∥∥∥∥η(p′−1)
0

)
+ 1

)
, 4η−(p′−1)

0

}

≤ E
ε

[
2eβp sup

1≤a≤b≤n

∥∥∥∥∥
b∑
t=a

εt`
′
txt

∥∥∥∥∥+ ppβppη0

(
log
(

sup
1≤a≤b≤n

∥∥∥∥∥
b∑
t=a

εt`
′
txt

∥∥∥∥∥η(p′−1)
0

)
+ 1

)
+ 4η−(p′−1)

0

]

Using that ‖xt‖ ≤ 1:

≤ 2eβp E
ε

sup
1≤a≤b≤n

∥∥∥∥∥
b∑
t=a

εt`
′
txt

∥∥∥∥∥+ ppβppη0 log
(
n · η(p′−1)

0

)
+ 4η−(p′−1)

0 .

For the choice η0 = (βp · p)−p:

≤ 2eβp E
ε

sup
1≤a≤b≤n

∥∥∥∥∥
b∑
t=a

εt`
′
txt

∥∥∥∥∥+ log (n) + (p · βp)
p
p−1 .

For the choice η0 = 1:

≤ 2eβp E
ε

sup
1≤a≤b≤n

∥∥∥∥∥
b∑
t=a

εt`
′
txt

∥∥∥∥∥+ ppβpp log (n) + 4.

Writing xt(ε1:t−1) and `′t(ε1:t−1) to make the adversary’s dependence on the sequence ε explicit,
the main term of interest in the above quantity is

E
ε

sup
1≤a≤b≤n

∥∥∥∥∥
b∑
t=a

εt`
′
t(ε1:t−1)xt(ε1:t−1)

∥∥∥∥∥.
It remains to remove the supremum and decouple the data sequences (xt) and (`′t) from
the Rademacher sequence ε. Since `′txt can only react to ε1:t−1, the sequence (εt`′txt)t≤n is a
martingale difference sequence. Since

∥∥∥∑b
t=a εt`

′
txt
∥∥∥ ≤ n, we may apply Corollary 9 to arrive

at an upper bound of

≤ O

(
log(n)E

ε
sup

1≤b≤n

∥∥∥∥∥
b∑
t=1

εt`
′
t(ε1:t−1)xt(ε1:t−1)

∥∥∥∥∥
)
.
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Now observe that since Algorithm 5 uses a Burkholder function Up for (‖·‖, p, βp), Theorem 7
and Theorem 8 together imply that the UMD1 inequality (8.9) holds with constant O(βp),
therefore, the above is bounded as

≤ O

(
βp log(n)E

ε
E
ε′

sup
1≤b≤n

∥∥∥∥∥
b∑
t=1

ε′t`
′
t(ε1:t−1)xt(ε1:t−1)

∥∥∥∥∥
)
.

Note that the variables (xt) and (`′t) no longer depend on the Rademacher sequence appearing
in the sum. Lastly, we apply Corollary 9 once more to remove the remaining supremum and
arrive at the bound,

≤ O

(
βp log2(n)E

ε
E
ε′

∥∥∥∥∥
n∑
t=1

ε′t`
′
t(ε1:t−1)xt(ε1:t−1)

∥∥∥∥∥
)
.

Proof of Example 17. (8.21) is obtained by plugging the optimal UMD constant p?−1 into
the bound for Lemma 14. For (8.22), observe that for any sequence zt we have Eε‖

∑n
t=1 εtzt‖2 ≤√

Eε‖
∑n
t=1 εtzt‖

2
2 =

√
Eε
∑n
t=1‖zt‖

2
2. Applying this fact with the algorithm’s bound for p = 2

gives the regret bound

O

√√√√ n∑
t=1
‖`′txt‖

2
2 · log2 n+ log n

.
For (8.23), observe that with p = 1/ log d we have the regret bound

O

E
ε

∥∥∥∥∥
n∑
t=1

εt`
′
txt

∥∥∥∥∥
p

· log d log2 n+ log2 d log n
.

However for any X, ‖X‖p ≤ d1−1/p‖X‖1. For our choice of p = 1 + 1/ log d we have
d1−1/p = O(1).

≤ O

(
E
ε

∥∥∥∥∥
n∑
t=1

εt`
′
txt

∥∥∥∥∥
1
· log d log2 n+ log2 d log n

)

≤ O

(
E
ε

∥∥∥∥∥
n∑
t=1

εtxt

∥∥∥∥∥
1
· log d log2 n+ log2 d log n

)

= O

∑
i∈[d]

E
ε

∣∣∣∣∣
n∑
t=1

εtxt[i]
∣∣∣∣∣ · log d log2 n+ log2 d log n


≤ O

∑
i∈[d]

√√√√ n∑
t=1

(xt[i])2 · log d log2 n+ log2 d log n


= O

∑
i∈[d]
‖x1:n,i‖2 · log d log2 n+ log2 d log n

.
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8.7.4 Proofs from Section 8.6

Since we restrict to the absolute loss in this section and restrict to yt ∈ [−1,+1], we can
also restrict to ŷt ∈ [−1,+1] without loss of generality, since for any value of yt the loss may
always be decreased by clipping ŷt into this range. In the proof below, any infimum over ŷt is
understood to be over this range.

Proof of Theorem 12. We shall first show that condition 2 implies condition 1, specifically
for constant B = 2C. We can write down the minimax value for the proposed regret bound
and check if it indeed is achievable. To this end, note that

Vol
n

= ⟪sup
xt

inf
ŷt

sup
yt∈[−1,+1]

⟫
n

t=1

[
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)− 2C E
ε

sup
f∈F

n∑
t=1

εtf(xt)
]

= ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt
⟫
n

t=1
sup
f∈F

[
n∑
t=1

(`(ŷt, yt)− `(f(xt), yt))− 2C E
ε

sup
f∈F

n∑
t=1

εtf(xt)
]

≤ ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt
⟫
n

t=1
sup
f∈F

[
n∑
t=1

`′(ŷt, yt)(ŷt − f(xt))− 2C E
ε

sup
f∈F

n∑
t=1

εtf(xt)
]

Setting ŷ∗t to be minimizer of E `(ŷt, yt), we have

≤ ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt
⟫
n

t=1
sup
f∈F

[
n∑
t=1

`′(ŷ∗t , yt)(ŷ∗t − f(xt))− 2C E
ε

sup
f∈F

n∑
t=1

εtf(xt)
]

= ⟪sup
xt

sup
pt∈∆[−1,+1]

inf
ŷt

E
yt∼pt
⟫
n

t=1
sup
f∈F

[
n∑
t=1
−`′(ŷ∗t , yt)f(xt)− 2C E

ε
sup
f∈F

n∑
t=1

εtf(xt)
]

= ⟪sup
xt

sup
pt∈∆[−1,+1]

E
yt∼pt
⟫
n

t=1
sup
f∈F

[
n∑
t=1

( E
y′t∼pt

`′(ŷ∗t , y′t)− `′(ŷ∗t , yt))f(xt)− 2C E
ε

sup
f∈F

n∑
t=1

εtf(xt)
]

≤ ⟪sup
xt

sup
pt∈∆[−1,+1]

E
yt,y′t∼pt

⟫
n

t=1
sup
f∈F

[
n∑
t=1

(`′(ŷ∗t , y′t)− `′(ŷ∗t , yt))f(xt)− 2C E
ε

sup
f∈F

n∑
t=1

εtf(xt)
]

= ⟪sup
xt

sup
pt∈∆[−1,+1]

E
yt,y′t∼pt

E
ε′t
⟫
n

t=1
sup
f∈F

[
n∑
t=1

ε′t(`′(ŷ∗t , y′t)− `′(ŷ∗t , yt))f(xt)− 2C E
ε

sup
f∈F

n∑
t=1

εtf(xt)
]

≤ ⟪sup
xt

E
ε′t
⟫
n

t=1
sup
f∈F

[
n∑
t=1

2ε′tf(xt)− 2C E
ε

sup
f∈F

n∑
t=1

εtf(xt)
]

= sup
x

E
ε′

sup
f∈F

[
n∑
t=1

2ε′tf(xt(ε′1:t−1))− 2C E
ε

sup
f∈F

n∑
t=1

εtxt(ε′1:t−1)
]
.

However, by condition 2, we have that the above is bounded by 0 and so we can conclude
that the minimax strategy does attain the regret bound proposed in condition 1.

Now to prove that condition 1 implies condition 2 (with constant B), notice that we have an
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algorithm that guarantees regret bound:
n∑
t=1

`(ŷt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt) ≤ B E
ε

sup
f∈F

n∑
t=1

εtf(xt)

Assume now that the adversary at time first provides input instance xt(ε1:t−1) where x is any
arbitrary X valued binary tree. Also assume that yt is picked to be εt a draw of a coin flip.
In this case, we have from the regret bound that

n∑
t=1

`(ŷt, εt)− inf
f∈F

n∑
t=1

`(f(xt(ε1:t−1)), εt) ≤ B E
ε′

sup
f∈F

n∑
t=1

ε′tf(xt(ε1:t−1))

Taking expectation we find that,

E
ε

[
n∑
t=1

`(ŷt, εt)− inf
f∈F

n∑
t=1

`(f(xt(ε1:t−1)), εt)
]
≤ B E

ε,ε′
sup
f∈F

n∑
t=1

ε′tf(xt(ε1:t−1))

Now notice that irrespective of what ŷt the algorithm picks, Eεt `(ŷt, εt) = 1. Hence,

E
ε

[
sup
f∈F

n∑
t=1

(1− `(f(xt(ε1:t−1)), εt))
]
≤ B E

ε,ε′
sup
f∈F

n∑
t=1

ε′tf(xt(ε1:t−1))

However note that when y ∈ {±1} and a ∈ [−1, 1], we have that `(a, y) = |a− y| = 1− ay.
Hence from above we conclude that,

E
ε

[
sup
f∈F

n∑
t=1

εtf(xt(ε1:t−1))
]
≤ B E

ε,ε′
sup
f∈F

n∑
t=1

ε′tf(xt(ε1:t−1))

Since the above is true for any choice of x, we have shown that condition 1 implies condition
2 with constant B.

Proof of Example 18. Let x be some X -valued tree. Observe that by the reproducing
property,

E
σ

sup
f∈F

n∑
t=1

σtf(xt(σ)) = E
σ

∥∥∥∥∥
n∑
t=1

σtK(·,xt(σ))
∥∥∥∥∥
H
,

and likewise Eσ,ε supf∈F
∑n
t=1 εtf(xt(σ)) = Eσ,ε‖

∑n
t=1 εtK(·,xt(σ))‖H.

Since H is a Hilbert space the deterministic UMD property for power 2 is trivial. For any
fixed sequence ε ∈ {±1}n,

E
σ

∥∥∥∥∥
n∑
t=1

σtK(·,xt(σ))
∥∥∥∥∥

2

H
= E

σ

∥∥∥∥∥
n∑
t=1

εtσtK(·,xt(σ))
∥∥∥∥∥

2

H
.

By Corollary 11, this implies there is some C such that

E
σ

sup
τ≤n

∥∥∥∥∥
τ∑
t=1

σtK(·,xt(σ))
∥∥∥∥∥
H

= C E
σ

sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εtσtK(·,xt(σ))
∥∥∥∥∥
H
.

Now suppose ε is drawn uniformly at random. For a fixed draw of σ, Corollary 10 implies
that the RHS enjoys the bound

E
ε

sup
τ≤n

∥∥∥∥∥
τ∑
t=1

εtK(·,xt(σ))
∥∥∥∥∥
H
≤ 2 log(Bn)E

ε

∥∥∥∥∥
n∑
t=1

εtK(·,xt(σ))
∥∥∥∥∥
H

+ 2
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Polynomials

Suppose we receive data x1, . . . , xn ∈ Rd and want to compete with a class F of homogeneous
polynomials of degree k. Any homogeneous degree k polynomial f may be represented via a
coefficient tensor M in (Rd)⊗k via

f(x) =
〈
M,x⊗k

〉
.

We may take M to be symmetric, so that M1,...,k = Mπ(1),...,π(k) for any permutation.
We may thus work with a class M ⊆ (Rd)⊗k of symmetric tensors, then take F ={
x 7→

〈
M,x⊗k

〉
|M ∈M

}
. Our task is then to decide which norm to place onM. Following,

e.g., Adamczak and Wolff (2015); Wang et al. (2017), we define a class of general tensor
norms. Let J = {J1, . . . , JN} be a partition of [k]. For some α ∈ [d]k and J ⊆ [k], let
αJ = (αi)i∈J . We then define

‖M‖J = sup


∑
α∈[d]k

Mα

N∏
l=1

xlαJl
|
∥∥∥xl∥∥∥

2
≤ 1 ∀l ∈ [N ]

, (8.32)

where xl ∈ (Rd)⊗|Jl|. Under this notation we have ‖M‖{1},{2} as the spectral norm and
‖M‖{1,2} as the Frobenius norm when k = 2 and M is a matrix. In general, ‖M‖{1},{2},...,{k}
is called the injective tensor norm.

Proof of Example 19. Fix an X -valued tree x. Then we have

E
σ

sup
f∈F

n∑
t=1

σtf(xt(σ)) = E
σ

sup
M∈M

n∑
t=1

σt
〈
M,xt(σ)⊗2k

〉
= E

σ

∥∥∥∥∥
n∑
t=1

σtxt(σ)⊗2k
∥∥∥∥∥
{1,...,k},{k+1,...,2k}

For some tensor T ∈ (Rd)⊗2k, we can define its flattening T into a Rdk×dk matrix and verify
that in fact

‖T‖{1,...,k},{k+1,...,2k} = max
u,v∈Rdk |‖u‖2,‖v‖2≤1

∑
α∈[d]k,β∈[d]k

Tα,βuαvβ =
〈
u, Tv

〉
= ‖T‖σ,

so in fact this is the spectral norm of the flattened matrix. Let Xt ∈ Rdk×dk be the flattening
of (xt)⊗2k. Then

E
σ

sup
f∈F

n∑
t=1

σtf(xt(σ)) = E
σ

∥∥∥∥∥
n∑
t=1

σtXt(σ)
∥∥∥∥∥
σ

,

so we can prove the desired inequality by applying the UMD inequality for the spectral norm.
Recall from Theorem 10 that the UMD inequality for the spectral norm has a constant of
order log2(dim), which for this application translates into a constant of order O(k2 log2(d)).
We finally apply Corollary 10 as in Example 18 to get the result.
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Empirical Covering Number Bounds

Proof of Theorem 14 and Theorem 15. Theorem 12 proves that when the one-sided
UMD-property (8.24) holds, there exists a strategy whose regret is bounded as

C E
ε

sup
f∈F

n∑
t=1

εtf(xt).

Since this quantity is the statistical Rademacher complexity, we may apply the classical
covering number bound (Rakhlin and Sridharan, 2012, Proposition 12.3):

E
ε

sup
f∈F

n∑
t=1

εtf(xt) ≤ O
(

inf
α>0

{
αn+

√
logN1(∆d, α, x1:n)n

})
.

Likewise, the classical Dudley entropy integral bound (Rakhlin and Sridharan, 2012, Theorem
12.4) yields:

E
ε

sup
f∈F

n∑
t=1

εtf(xt) ≤ O
(

inf
α>0

{
α · n+

∫ 1

α

√
logN2(F , δ, x1:n)ndδ

})
.

8.7.5 UMD Spaces and Martingale Inequalities

Stopping Inequalities

Let (Zt) be a martingale. For two stopping times τ1, τ2, we define its stopped version as Zτ1:τ2
t

via
dZτ1:τ2

t = dZt1{t > τ1}1{t ≤ τ2}.

Proposition 13 (Hytönen et al. (2016), Proposition 3.1.14). For any p ∈ [1,∞),

E‖Zτ1:τ2
n ‖p ≤ 2p E‖Zn‖p.

Theorem 16 (Doob’s Maximal Inequality). For any martingale (Zt)t≥1 taking values in
(B, ‖·‖) and any p ∈ (1,∞],

E sup
τ≤n

∥∥∥∥∥
τ∑
t=1

dZt

∥∥∥∥∥
p

≤ (p′)p E
∥∥∥∥∥
n∑
t=1

dZt

∥∥∥∥∥
p

. (8.33)

Furthermore
P
(

sup
τ≤n

∥∥∥∥∥
τ∑
t=1

dZt

∥∥∥∥∥ > λ

)
≤ 1
λ
E
∥∥∥∥∥
n∑
t=1

dZt

∥∥∥∥∥ ∀λ > 0. (8.34)

More generally, (8.33) and (8.34) hold when the sequence (‖∑τ
t=1 dZt‖)τ≥1 is replaced by any

non-negative submartingale (Fτ )τ≥1.
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Corollary 9. If (Fn) is a non-negative submartingale and Fn ≤ A almost surely then for all
η > 0,

E
[
max
τ≤n

Fτ

]
≤ (logA+ log η) · E[Fn] + 1

η
.

Proof of Corollary 9.

E
[
max
τ≤n

Fτ

]
=
∫ ∞

0
P
(

max
τ≤n

Fτ > λ
)
dλ

=
∫ A

0
P
(

max
τ≤n

Fτ > λ
)
dλ

≤
∫ A

1/η
P
(

max
τ≤n

Fτ > λ
)
dλ+ 1

η

≤ E[Fn]
∫ A

1
η

1
λ
dλ+ 1

η

= (logA+ log η) · E[Fn] + 1
η
.

Corollary 10. Let (Zt) be any martingale difference sequence in (B, ‖·‖) with ‖Zt‖ ≤ B
almost surely. Then

E sup
1≤a≤b≤n

∥∥∥∥∥
b∑
t=a

Zt

∥∥∥∥∥ ≤ 2 log(Bn)E
∥∥∥∥∥
n∑
t=1

Zt

∥∥∥∥∥+ 2. (8.35)

Proof of Corollary 10. First, observe that the supremum over starting times can easily
be removed: ∥∥∥∥∥

b∑
t=a

Zt

∥∥∥∥∥ =
∥∥∥∥∥
b∑
t=1

Zt −
a−1∑
t=1

Zt

∥∥∥∥∥ ≤
∥∥∥∥∥
b∑
t=1

Zt

∥∥∥∥∥+
∥∥∥∥∥
a−1∑
t=1

Zt

∥∥∥∥∥,
and so

E sup
1≤a≤b≤n

∥∥∥∥∥
b∑
t=a

Zt

∥∥∥∥∥ ≤ 2E sup
1≤b≤n

∥∥∥∥∥
b∑
t=1

Zt

∥∥∥∥∥.
Observe that the sequence Xτ := ‖∑τ

t=1 Zt‖ is clearly a non-negative submartingale (with
respect to (Zt)), since

E[Xτ | Z1, . . . Zτ−1] = E
Zτ

[∥∥∥∥∥
τ∑
t=1

Zt

∥∥∥∥∥ | Z1, . . . Zτ−1

]
≥
∥∥∥∥∥
τ−1∑
t=1

Zt + E
Zτ

[Zτ | Z1, . . . Zτ−1]
∥∥∥∥∥ = Xτ−1.

This, combined with boundedness of ‖Zt‖, means that we can apply Corollary 9 with η = 1,
which gives

E sup
1≤b≤n

∥∥∥∥∥
b∑
t=1

Zt

∥∥∥∥∥ ≤ log(Bn)E
∥∥∥∥∥
n∑
t=1

Zt

∥∥∥∥∥+ 1.
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UMD Inequalities

Theorem 17 (Hytönen et al. (2016), Theorem 4.2.7). Suppose (B, ‖·‖) is such that the
deterministic UMD inequality

E
∥∥∥∥∥
n∑
t=1

εtdZt

∥∥∥∥∥
p

≤ Cp
p E
∥∥∥∥∥
n∑
t=1

dZt

∥∥∥∥∥
p

holds for p ∈ (1,∞). Then the determinstic UMD inequality

E
∥∥∥∥∥
n∑
t=1

εtdZt

∥∥∥∥∥
q

≤ Cq
q E
∥∥∥∥∥
n∑
t=1

dZt

∥∥∥∥∥
q

holds for any q ∈ (1,∞), with

Cq ≤ 100
(
q

p
+ q′

p′

)
Cp.

Theorem 18 (Pisier (2011), Theorem 8.23). Suppose that the deterministic UMD inequality

sup
n

E
∥∥∥∥∥
n∑
t=1

εtdZt

∥∥∥∥∥
2

≤ C2
2 sup

n
E
∥∥∥∥∥
n∑
t=1

dZt

∥∥∥∥∥
2

holds for any sign sequence. Then the L1 UMD inequality

E sup
n

∥∥∥∥∥
n∑
t=1

εtdZt

∥∥∥∥∥ ≤ 54C2 E sup
n

∥∥∥∥∥
n∑
t=1

dZt

∥∥∥∥∥
holds as well.
Corollary 11. If deterministic UMD inequality

E
∥∥∥∥∥
n∑
t=1

εtdZt

∥∥∥∥∥
2

≤ C2
2 E
∥∥∥∥∥
n∑
t=1

dZt

∥∥∥∥∥
2

holds for any sign sequence, then the L1 UMD inequality

E sup
n

∥∥∥∥∥
n∑
t=1

εtdZt

∥∥∥∥∥ ≤ 108C2 E sup
n

∥∥∥∥∥
n∑
t=1

dZt

∥∥∥∥∥
holds as well.
Theorem 19 (Hytönen et al. (2016), Proposition 4.2.17). If (B, ‖·‖) is UMDp with constant
Cp, then (B?, ‖·‖?) is UMDp′ with constant Cp′ = Cp.

8.7.6 Burkholder/Bellman Functions

Elementary Design of Zig-Zag Concave Burkholder Functions

The following construction for the scalar case does not obtain optimal constants, but should
give the reader a taste of how one can construct a zig-zag concave Burkholder function from
first principles.
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Theorem 20 (Elementary Scalar U Function). Let k ≥ 4 be an even integer. Then the
function

U(x, y) = k

2

xk − 2
(
k

2

)
xk−2y2 − 1

k − 2

(
k

2

)−1(
4
(
k

2

)(
k − 2

2

))k−2

yk

.
is Zig-Zag for |·|k, with UMD constant

Ck ≤ αk4

for some constant α.

Proof. Let Ũ(x, y) = xk−Cxk−2y2−Byk. We will show that Ũ is Zig-Zag for an appropriate
choice of constants B and C.

Fix h ∈ R and let G(t) = Ũ(x+ ht, y + εht) for ε ∈ {±1}. By direct calculation we have

G′′(0) = 2h2
[(
k

2

)
xk−2 − C

((
k − 2

2

)
xk−4y2 + 2

(
k − 2

2

)
εxk−3y + xk−2

)
−B

(
k

2

)
yk−2

]

Since k is even, xk−4y2 is a square; we will simply drop this term.

≤ 2h2
[(
k

2

)
xk−2 − C

(
2
(
k − 2

2

)
εxk−3y + xk−2

)
−B

(
k

2

)
yk−2

]

≤ 2h2
[(
k

2

)
xk−2 + 2C

(
k − 2

2

)
|x|k−3|y| − Cxk−2 −B

(
k

2

)
yk−2

]

By Young’s inequality, we have

2C
(
k − 2

2

)
|x|k−3|y| =

(
2C
(
k − 2

2

)
|y|
)

︸ ︷︷ ︸
a

· |x|k−3︸ ︷︷ ︸
b

,

where we have applied a · b ≤ 1
k−2a

k−2 + k−3
k−2b

k−2
k−3 . This expression is at most

1
k−2

(
(2C

(
k−2

2

)
)k−2yk−2 + (k − 3)xk−2

)
.

Returning to G′′(0), we now have

G′′(0) ≤ 2h2

((k
2

)
+ k − 3
k − 2 − C

)
xk−2 +

 1
k − 2

(
2C
(
k − 2

2

))k−2

−B
(
k

2

)yk−2

.
In particular, we can take C ≥ 2

(
k
2

)
and B ≥ 1

k−2

(
2C
(
k−2

2

))k−2(k
2

)−1
.

≤ 0.
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This certifies that G is zig-zag concave. To see the upper bound property, observe by that
Young’s inequality,

xk − Cxk−2y2 −Byk ≥ 2
k
xk −

(2
k
C

k
2 +B

)
yk.

Hence, if we take U(x, y) = k
2Ũ(x, y), we have

U(x, y) ≥ xk −
(
C

k
2 + k

2B
)
yk.

Zig-Zag Concave Burkholder Functions with Exponent p = 1

Definition 6 ((1, 1) Weak Type Burkholder Function). A function U : B × B → R is
(‖·‖, β) Zig-Zag for weak type if

1. U(x, x′) ≥ 1{‖x‖ ≥ 1} − β‖x′‖.

2. U is zig-zag concave: z 7→ U(x+ εz, x′ + z) is concave for all x, x′ ∈ X and ε ∈ {±1}.

3. U(0, 0) ≤ 0.
Lemma 15. Suppose we are given a weak type Burkholder function U‖·‖,weak for (‖·‖, β).
Then for all arguments x, y with ‖x‖, ‖y‖ ≤ B, the following function is Zig-Zag for
(‖·‖, 1, Cβ log(B/ε)) up to additive slack ε:

U‖·‖,1(x, y) := ε
N∑
k=1

U‖·‖,weak(x/λk, y/λk), (8.36)

where N = dB/εe and λk = kε.

Proof of Lemma 15. Let V (x, y) = ‖x‖−C ′β log(B/ε)‖y‖−ε. We will show that U(x, y) ≥
V (x, y) when ‖x‖, ‖y‖ ≤ B.

V (x, y) = ‖x‖ − C ′β log(B/ε)‖y‖ − ε

≤ ε+ ε
N∑
k=1

1{‖x‖ ≥ λk} − C ′β log(B/ε)‖y‖ − ε

≤ ε
N∑
k=1

[
U‖·‖,weak(x/λk, y/λk) + β

λk
‖y‖

]
− C ′β log(B/ε)‖y‖

= U‖·‖,1(x, y) + ε
N∑
k=1

β

λk
‖y‖ − C ′β log(B/ε)‖y‖

= U‖·‖,1(x, y) + β‖y‖
N∑
k=1

1
k
− C ′β log(B/ε)‖y‖

≤ U‖·‖,1(x, y) + Cβ‖y‖ log(N)− C ′β log(B/ε)‖y‖
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For sufficiently large C ′:

≤ U‖·‖,1(x, y).

It can be seen immediately that U‖·‖,1(x, y) is zig-zag concave and has U‖·‖,1(0, 0) ≤ 0.

Zig-Zag Concavity and ζ-Convexity

Definition 7. We say (B, ‖·‖) is ζ-convex if there exists ζ : B×B→ R such that

1. ζ is biconvex.

2. ζ(x, y) ≤ ‖x+ y‖ if ‖x‖ = ‖y‖ = 1,

Given a such a function ζ, we can construct a “canonical” function u which satisfies some
additional properties
Definition 8.

u(x, y) :=
{

max{ζ(x, y), ‖x+ y‖}, max{‖x‖, ‖y‖} < 1
‖x+ y‖, max{‖x‖, ‖y‖} ≥ 1. .

Then u is biconvex, has ζ(0, 0) ≤ u(0, 0), and satisfies

u(x, y) ≤ ‖x+ y‖ if max{‖x‖, ‖y‖} ≥ 1.

Also, u(x, y) = u(−x,−y).
Assumption 2. u(x,−x) ≤ 0.

The ζ function given in Example 20 satisfies this condition. More generally, most ζ functions
can be made to satisfy this property with a slight blowup in the UMD constant they imply
(c.f. (Burkholder, 1986, Lemma 8.5)).

By (Burkholder, 1986, 8.6) Assumption 2 implies u(x, y) ≤ u(0, 0) + ‖x+ y‖. The following
argument due to (Burkholder, 1986) shows how to create a U function from the function u.
Theorem 21. Suppose ‖·‖ is ζ-convex and u satisfies Assumption 2. Then this space is
UMD with weak type estimate

P
(∥∥∥∥∥

n∑
t=1

dZt

∥∥∥∥∥ ≥ 1
)
≤ 2
u(0, 0) E

∥∥∥∥∥
n∑
t=1

εtdZt

∥∥∥∥∥
for any martingale difference sequence (dZt). Furthermore, the function

U(x, y) = 1− u(x+ y, y − x)
u(0, 0)

is weak-type Zig-Zag for (‖·‖, 2
ζ(0,0)), in the sense of Definition 6.
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Proof of Theorem 21. For the weak type estimate, we will start with the base function

V (x, y) = 1{‖x‖ ≥ 1} − 2
u(0, 0)‖y‖.

We will now show that V (x, y) ≤ U(x, y). First, observe that

1{‖x‖ ≥ 1} = 1{‖(x+ y) + (x− y)‖ ≥ 2} ≤ 1{max{‖x+ y‖, ‖y − x‖} ≥ 1}
≤ 1{2‖y‖ ≥ u(x+ y, y − x)},

where the last inequality follows from the additional property of u from Definition 8. We
have now established

V (x, y) ≤ 1{2‖y‖ ≥ u(x+ y, y − x)} − 2
u(0, 0)‖y‖

= 1{2‖y‖ − u(x+ y, y − x) + u(0, 0) ≥ u(0, 0)} − 2
u(0, 0)‖y‖

By the second additional property of u from Definition 8, 2‖y‖−u(x+ y, y−x) +u(0, 0) ≥ 0,
and so we may apply Markov’s inequality

≤ 2‖y‖ − u(x+ y, y − x) + u(0, 0)
u(0, 0) − 2

u(0, 0)‖y‖

= U(x, y).

Observe that U(0, 0) = 0 and, since u is biconvex, −u(x+ y, y − x) is zig-zag concave, and
so U is itself zig-zag concave. We can now prove that the UMD property holds with constant

2
u(0,0) ≤

2
ζ(0,0) using the standard step-by-step peeling argument with U described in Hytönen

et al. (2016), Theorem 4.5.6.
Example 20 (`d1 Osekowski (2016)). Define

z(x, y) =


a〈x,y〉

2 − 1
2a , ‖x+ y‖+ ‖x− y‖ ≤ 2/a

‖x+y‖
2 log

(
a
2(‖x+ y‖+ ‖x− y‖)

)
− ‖x−y‖2 , ‖x+ y‖+ ‖x− y‖ > 2/a .

Then define

ζ(x, y) = 2
log(3a)

(
1 +

d∑
i=1

z(xi, yi)
)
.

For a ≥ d log d the ζ-convexity properties are satisfied and the bound

ζ(0, 0) ≤ 2
log d+ log(2 log d)

(
1− 1

2 log d

)

is achieved.

8.8 Chapter Notes

This chapter is based on Foster et al. (2017b). A number of questions centered around the
zig-zag concave Burkholder functions remain open. Here we state two.
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General function classes Understanding what abstract properties of the function class F
(behavior of covering numbers etc.) lead to the generalized UMD inequality is an important
problem. Progress in this direction will hopefully lead to more concrete examples of classes
with the property.

Tighter rates for specific losses The empirical Rademacher complexity regret bound is
not tight for strongly convex losses such as the square loss. Offset rademacher complexity
techniques have been used to obtain tight worst-case rates in this case (Rakhlin and Sridharan,
2014). Developing UMD-type inequalities for the offset Rademacher complexity would yield
new adaptive algorithms for a number of settings.
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Chapter 9

Online Optimization

In this chapter we turn our focus to online convex optimization. The online convex opti-
mization model has seen widespread use for solving large-scale empirical risk minimization
problems for machine learning (Zinkevich, 2003; Duchi et al., 2011). Beyond empirical
risk minimization, online convex optimization algorithms give way to stochastic convex
optimization guarantees, and in imply upper bounds on the oracle complexity of stochastic
optimization (Nemirovski et al., 1983).

We introduce a very general type of adaptivity for online convex optimization inspired
by model selection-based adaptivity results in statistical learning. We call this notion of
adaptivity online model selection, as it subsumes the classical model selection framework
and extends it to the online convex optimization setting. The new notion of adaptivity also
encompasses literature on parameter-free online optimization (McMahan and Abernethy,
2013; McMahan and Orabona, 2014; Orabona, 2014; Orabona and Pál, 2016) which focuses
on adapting to a single scalar parameter for optimization in Hilbert space, but is substantially
more general.

The results in this chapter leverage the equivalence of adaptive online learning and martingale
inequalities to a) characterize the achievability of online model selection adaptivity via a
type of martingale inequality we call a multi-scale maximal inequality and b) derive a new
efficient online convex optimization algorithm that achieves this form of adaptivity. The core
algorithmic tool is a new multi-scale algorithm for prediction with expert advice based on
random playout. This can be seen as an algorithmic realization of the achievability result
presented in Section 6.4.1. Applications include new online model selection guarantees for
matrix classes, non-nested convex sets, and Rd with generic regularizers. Finally, we generalize
these results by providing oracle inequalities for arbitrary non-linear classes in the online
supervised learning model.
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9.1 Background

A key problem in the design of learning algorithms is the choice of the hypothesis set F . This
is known as the model selection problem. The choice of F is driven by inherent trade-offs.
In the statistical learning setting, this can be analyzed in terms of the estimation and
approximation errors. A richer or more complex F helps better approximate the Bayes
predictor (smaller approximation error). On the other hand, a hypothesis set that is too
complex may have too large a VC dimension or have unfavorable Rademacher complexity,
thereby resulting in looser guarantees on the difference between the loss of a hypothesis and
that of the best in class (large estimation error).

In the batch setting, this problem has been extensively studied with the main ideas originating
in the seminal work of Vapnik and Chervonenkis (1971) and Vapnik (1982) and the principle
of Structural Risk Minimization (SRM). This is typically formulated as follows: let (Fi)i∈N be
an infinite sequence of hypothesis sets (or models); the problem consists of using the training
sample to select a hypothesis set Fi with a favorable estimation-approximation trade-off and
choosing the best hypothesis f in Fi.

If we had access to a hypothetical oracle informing us of the best choice of i for a given
instance, the problem would reduce to the standard one of learning with a fixed hypothesis
set. Remarkably though, techniques such as SRM or similar penalty-based model selection
methods return a hypothesis f ∗ that enjoys finite-sample learning guarantees that are almost
as favorable as those that would be obtained had an oracle informed us of the index i∗ of
the best-in-class classifier’s hypothesis set (Vapnik, 1982; Devroye et al., 1996; Shawe-Taylor
et al., 1998; Koltchinskii, 2001; Bartlett et al., 2002; Massart, 2007). Such guarantees are
sometimes referred to as oracle inequalities. They can be derived even for data-dependent
penalties (Koltchinskii, 2001; Bartlett et al., 2002; Bartlett and Mendelson, 2003).

A line in of research in online optimization community suggests that similar results might
be possible in online optimization (and thus stochastic optimization as well). Specifically,
McMahan and Abernethy (2013); McMahan and Orabona (2014); Orabona (2014); Orabona
and Pál (2016) all present algorithms that efficiently achieve model selection oracle inequalities
for the important special case where F1,F2, . . . is a sequence of nested balls in a Hilbert space.
Such results naturally raise the following questions for the online setting: can we develop a
general theory of model selection in online convex optimization that works for arbitrary model
sequences, not just Hilbert spaces? Moreover, can we achieve such guarantees efficiently?
Note that unlike the statistical setting, in online learning one cannot split samples to first
learn the optimal predictor within each subclass and then later learn the optimal subclass
choice, so new algorithmic ideas are required.

The first approach that a familiar reader might think of for tackling the online model selection
problem is to run for each i an online learning algorithm that minimizes regret against Fi,
and then aggregate over these algorithms using the multiplicative weights algorithm for
prediction with expert advice. This would work if all the losses or “experts” considered were
uniformly bounded by a reasonably small quantity. However, for problems in online convex
optimization the losses of predictors or experts for each Fi may grow with i. Using simple
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aggregation would scale our regret with the magnitude of the largest Fi and not the i∗ we
want to compare against. This is the main technical challenge faced in this context, and one
that we fully address in this paper.

Our results are based on a novel multi-scale algorithm for prediction with expert advice. This
algorithm works in a situation where the different experts’ losses lie in different ranges, and
guarantees that the regret to each individual expert is adapted to the range of its losses. The
algorithm can also take advantage of a given prior over the experts reflecting their importance.
This general, abstract setting of prediction with expert advice yields generic online model
selection algorithms. The result is achieved by exploiting the equivalence developed in Part II:
We first characterize the achievability of the multi-scale prediction guarantee by proving a
certain “multi-scale maximal inequality” for martingales, and then use minimax analysis to
derive an efficient algorithm that achieves this form of adaptivity.

9.1.1 Preliminaries

Setup and Goals. We work in the online convex optimization setting (Protocol 3), where
the learner selects decisions from a convex subset W of some Banach space B. Regret to a
comparator w ∈ W in this setting is defined as Regn(w) = ∑n

t=1 ft(wt)−
∑n
t=1 ft(w).

Suppose W can be decomposed into sets W1,W2, . . .. For a fixed set Wk, the optimal regret,
if one tailors the algorithm to compete with Wk, is typically characterized by some measure
of intrinsic complexity of the class such as Littlestone’s dimension or sequential Rademacher
complexity (Ben-David et al., 2009; Rakhlin et al., 2014), denoted Compn(Wk). We would
like to develop adaptive algorithms for online convex optimization that produce a sequence
(wt)t≥1 such that

n∑
t=1

ft(wt)− min
w∈Wk

n∑
t=1

ft(w) ≤ Compn(Wk) + Penn(k) ∀k. (9.1)

This equation is called an oracle inequality and states that the performance of the se-
quence (wt) matches that of a comparator that minimizes the bias-variance tradeoff
mink{minw∈Wk

∑n
t=1 ft(w) + Compn(Wk)}, up to a penalty Penn(k) whose scale ideally

matches that of Compn(Wk). We shall see shortly that ensuring that the scale of Penn(k)
does indeed match is the core technical challenge in developing online oracle inequalities for
commonly used classes.

9.2 Online Model Selection

9.2.1 Multi-Scale Aggregation

Let us briefly motivate the main technical challenge overcome by the model selection approach
we consider. The most widely studied oracle inequality in online learning has the following
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form
n∑
t=1

ft(wt)−
n∑
t=1

ft(w) ≤ O
(

(‖w‖2 + 1)
√
n · log((‖w‖2 + 1)n)

)
∀w ∈ Rd. (9.2)

In light of (9.1), a model selection approach to obtaining this inequality would be to split the
set W = Rd into `2 norm balls of doubling radius, i.e. Wk =

{
w | ‖w‖2 ≤ 2k

}
. A standard

fact (Hazan, 2016) is that such a set has Compn(Wk) = 2k
√
n if one optimizes over it using

Mirror Descent, and so obtaining the oracle inequality (9.1) is sufficient to recover (9.2), so
long as Penn(k) is not too large relative to Compn(Wk).

We view online model selection as a problem of prediction with expert advice (Cesa-Bianchi
and Lugosi, 2006), where the experts correspond to the different model classes one is choosing
from. Our basic meta-algorithm, MultiScaleFTPL (Algorithm 6), operates in the following
setup. The algorithm has access to a finite number, N , of experts. In each round, the algorithm
is required to choose one of the N experts. Then the losses of all experts are revealed, and
the algorithm incurs the loss of the chosen expert.

The twist from the standard setup is that the losses of all the experts are not uniformly
bounded in the same range. Indeed, for the setup described for the oracle inequality (9.2),
class Wk will produce predictions with norm as large as 2k. Therefore, here, we assume
that expert i incurs losses in the range [−ci, ci], for some known parameter ci ≥ 0. The
goal is to design an online learning algorithm whose regret to expert i scales with ci, rather
than maxi ci, which is what out-of-the-box algorithms for learning from expert advice (such
as the multiplicative weights strategy or AdaHedge (De Rooij et al., 2014)) would achieve.
Indeed, any regret bound scaling in maxi ci will be far too large to achieve (9.2), as the term
Penn(k) will dominate. This new type of scale-sensitive regret bound, which is achieved by
our algorithm MultiScaleFTPL, is stated below.

Algorithm 6
procedure MultiScaleFTPL(c, π) . Scale vector c with ci ≥ 1, prior distribution π.

for time t = 1, . . . , n: do
Draw sign vectors σt+1, . . . , σn ∈ {±1}N each uniformly at random.
Compute distribution

pt(σt+1:n) = arg min
p∈∆N

sup
gt:|gt[i]|≤ci

[
〈p, gt〉+ sup

i∈[N ]

[
−

t∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]]
,

where B(i) = 5ci
√
n log(4c2

in/πi).
Play it ∼ pt.
Observe loss vector gt.

end for
end procedure

Theorem 22. Suppose the loss sequence (gt)t≤n satisfies |gt[i]| ≤ ci for a sequence (ci)i∈[N ]
with each ci ≥ 1. Let π ∈ ∆N be a given prior distribution on the experts. Then, playing the
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strategy (pt)t≤n given by Algorithm 6, MultiScaleFTPL yields the following regret bound:1

E
[
n∑
t=1
〈eit , gt〉 −

n∑
t=1
〈ei, gt〉

]
≤ O

(
ci
√
n log(nci/πi)

)
∀i ∈ [N ]. (9.3)

Briefly, the key to showing achievability of this theorem is the following maximal inequality,
which arises via the equivalence of adaptive prediction inequalities and martingale inequalities
derived in Part II. The inequality is multi-scale analogue of the classical maximal inequality
subgaussian random variables (e.g. Boucheron et al. (2013)).
Lemma 16 (Multi-Scale Maximal Inequality). Let (Xi)i∈[N ] be a real-valued random process
for which there exists a sequence (hi)i∈[N ] with hi > 0 such that the moment generating
function bound E eλXi ≤ eλ

phi is satisfied for all λ > 0 and some choice of p > 0. Then for
any distribution π ∈ ∆N for which hi/πi ≥ e for all i ∈ [N ] it holds that

Emax
i∈[N ]

{
Xi − (2 + 1/p)h1/p

i (log(hi) + log(1/πi))1−1/p
}
≤

∑
i∈[N ]

πi
hi
. (9.4)

For our application the inequality arises when each Xi is a martingale difference sequence
with increments bounded in magnitude by ci, and the key takeaway is that if we look at the
maximum deviation relative to an offset function B(i), the right-hand side need not scale
with maxi ci.

Compared to related FTPL algorithms (Rakhlin et al., 2012), the analysis of Theorem 22 is
surprisingly delicate, as additive ci factors at any point in the analysis can spoil the desired
regret bound (9.3) if different cis differ by orders of magnitude.

The min-max optimization problem in MultiScaleFTPL can be solved in Õ(N3.5) time
using linear programming. See Section 9.3.1 for a detailed discussion.

9.2.2 Adaptive Algorithms for Online Convex Optimization

One can readily apply MultiScaleFTPL for online optimization problems whenever it
is possible to bound the losses of the different experts a-priori. One such application is to
online convex optimization, where each “expert” is a a particular OCO algorithm, and for
which such a bound can be obtained via appropriate bounds on the relevant norms of the
parameter vectors and the gradients of the loss functions. We detail this application — which
yields algorithms for parameter-free online learning and more — below. All of the algorithms
in this section are derived using a unified meta-algorithm strategy MultiScaleOCO.

The setup is as follows. We have access to N sub-algorithms, denoted Algi for i ∈ [N ]. In
round t, each sub-algorithm Algi produces a prediction wit ∈ Wi, where Wi is a set in a

1This regret bound holds under expectation over the player’s randomization. It is as-
sumed that each gt is selected before the randomized strategy pt is revealed, but may adapt
to the distribution over pt. In fact, a slightly stronger version of this bound holds, namely
E
[∑n

t=1〈eit , gt〉 −mini∈[N ]

{∑n
t=1〈ei, gt〉+O

(
ci
√
n log(nci/πi)

)}]
≤ 0. A similar strengthening applies

to all subsequent bounds.
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vector space V over R containing 0. Our meta-algorithm is then required to choose one of
the predictions wit. Then, a loss function ft : V → R is revealed, whereupon Algi incurs
loss ft(wit), and the meta-algorithm suffers the loss of the chosen prediction. We make the
following assumption on the sub-algorithms:
Assumption 3. The sub-algorithms satisfy the following conditions:

• For each i ∈ [N ], there is an associated norm ‖·‖(i) such that supw∈Wi
‖w‖(i) ≤ Ri.

• For each i ∈ [N ], the sequence of functions ft are Li-Lipschitz on Wi with respect to
‖·‖(i).

• For each sub-algorithm Algi, the iterates (wit)t≤n enjoy a regret bound ∑n
t=1 ft(wit)−

infw∈Wi

∑n
t=1 ft(w) ≤ Regn(i), where Regn(i) may be data- or algorithm-dependent.

Algorithm 7
procedure MultiScaleOCO({Algi, Ri, Li}i∈[N ], π) . Collection of sub-algorithms, prior π.

c← (Ri · Li)i∈[N ] . Sub-algorithm scale parameters.
for t = 1, . . . , n do

wit ← Algi(f̃1, . . . , f̃t−1) for each i ∈ [N ].
it ←MultiScaleFTPL[c, π](g1, . . . , gt−1).
Play wt = witt .
Observe loss function ft and let f̃t(w) = ft(w)− ft(0).
gt ←

(
f̃t(wit)

)
i∈[N ]

.
end for

end procedure

In most applications, Wi will be a convex set and ft a convex function; this convexity is not
necessary to prove a regret bound for the meta-algorithm. We simply need boundedness of the
set Wi and Lipschitzness of the functions ft, as specified in Assumption 3. This assumption
implies that for any i, we have |ft(w)− ft(0)| ≤ RiLi for any w ∈ Wi. Thus, we can design a
meta-algorithm for this setup by using MultiScaleFTPL with ci = RiLi, which is precisely
what is described in Algorithm 7. The following theorem provides a bound on the regret of
MultiScaleOCO; a direct consequence of Theorem 22.
Theorem 23. Without loss of generality, assume that RiLi ≥ 12. Suppose that the inputs to
Algorithm 7 satisfy Assumption 3. Then the iterates (wt)t≤n returned by Algorithm 7 follow
the regret bound

E
[
n∑
t=1

ft(wt)− inf
w∈Wi

n∑
t=1

ft(w)
]
≤ E[Regn(i)] +O

(
RiLi

√
n log(RiLin/πi)

)
∀i ∈ [N ]. (9.5)

Theorem 23 shows that if we use Algorithm 7 to aggregate the iterates produced by a
collection of sub-algorithms (Algi)i∈[N ], the regret against any sub-algorithm i will only
depend on that algorithm’s scale, not the regret of the worst sub-algorithm.

2For notational convenience all Lipschitz bounds are assumed to be at least 1 without loss of generality
for the remainder of the chapter.
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Application 1: Parameter-free Online Learning in Uniformly Convex Banach
Spaces. As the first application of our framework, we give a generalization of the parameter-
free online learning bounds found in McMahan and Abernethy (2013); McMahan and Orabona
(2014); Orabona (2014); Orabona and Pál (2016); Cutkosky and Boahen (2016) from Hilbert
spaces to arbitrary uniformly convex Banach spaces. Recall that a Banach space (B, ‖·‖) is
(2, λ)-uniformly convex if 1

2‖·‖
2 is λ-strongly convex with respect to itself (Pisier, 2011). Our

algorithm obtains a generalization of the oracle inequality (9.2) for any uniformly convex
(B, ‖·‖) by running multiple instances of Mirror Descent — the workhorse of online convex
optimization — and aggregating their iterates using MultiScaleOCO. This strategy is
thus efficient whenever Mirror Descent can be implemented efficiently. The collection of sub-
algorithms used by MultiScaleOCO, which was alluded to at the beginning of this section
is as follows: For each 1 ≤ i ≤ N := n+ 1, set Ri = ei−1, Li = L, Wi = {w ∈ B | ‖w‖ ≤ Ri},
ηi = Ri

L

√
λ
n
, and Algi = MirrorDescent(ηi,Wi, ‖·‖2). Finally, set π = Uniform([n+ 1]).

Mirror Descent is reviewed in detail in Section 9.3.2, but the only feature of its performance
of importance to our analysis is that, when configured as described above, the iterates (wit)t≤n
produced by Algi specified above will satisfy ∑n

t=1 ft(wit)− infw∈Wi

∑n
t=1 ft(w) ≤ O(RiL

√
λn)

on any sequence of losses that are L-Lipschitz with respect to ‖·‖?. Using just this simple
fact, combined with the regret bound for MultiScaleOCO and a few technical calculations,
we can deduce the following parameter-free learning oracle inequality:
Theorem 24 (Oracle inequality for uniformly convex Banach spaces). The iterates (wt)t≤n
produced by MultiScaleOCO on any L-Lipschitz (w.r.t. ‖·‖?) sequence of losses (ft)t≤n
satisfy

E
[
n∑
t=1

ft(wt)−
n∑
t=1

ft(w)
]
≤ O

(
L · (‖w‖+ 1)

√
n · log((‖w‖+ 1)Ln)/λ

)
∀w ∈ B. (9.6)

Note that the above oracle inequality applies for any uniformly convex norm ‖·‖. Previous
results only obtain bounds of this form efficiently when ‖·‖ is a Hilbert space norm or `1. As
is standard for such oracle inequality results, the bound is weaker than the optimal bound if
‖w‖ were selected in advance, but only by a mild

√
log((‖w‖+ 1)Ln) factor.

Proposition 14. The algorithm can be implemented in time O(TMD · poly(n)) per iteration,
where TMD is the time complexity of a single Mirror Descent update.

In the example above, the (2, λ)-uniform convexity condition was mainly chosen for familiarity.
The result can easily be generalized to related notions such as q-uniform convexity (see Srebro
et al. (2011)). More generally, the approach can be used to derive oracle inequalities with
respect to general strongly convex regularizer R defined over the space W. Such a bound
would have the form O

(
L ·

√
n(R(w) + 1) · log((R(w) + 1)n)

)
for typical choices of R.

This example captures well-known quantile bounds (Koolen and van Erven, 2015) when one
takes R to be the KL-divergence and W to be the simplex, or, in the matrix case, takes R
to be the quantum relative entropy and W to be the set of density matrices, as in Hazan
et al. (2012).
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Application 2: Oracle Inequality for Many `p Norms. It is instructive to think of
MultiScaleOCO as executing a (scale-sensitive) online analogue of the structural risk
minimization principle. We simply specify a set of subclasses and a prior π specifying
the importance of each subclass, and we are guaranteed that the algorithm’s performance
matches that of each sub-class, plus a penalty depending on the prior weight placed on
that subclass. The advantage of this approach is that the nested structure used in the
Theorem 24 is completely inessential. This leads to the exciting prospect of developing
parameter-free algorithms over new and exotic set systems. One such example is given now:
The MultiScaleOCO framework allows us to obtain an oracle inequality with respect to
many `p norms in Rd simultaneously. To the best of our knowledge all previous works on
parameter-free online learning have only provided oracle inequalities for a single norm.
Theorem 25. Fix δ > 0. Suppose that the loss functions (ft)t≤n are Lp-Lipschitz w.r.t. ‖·‖p′
for each p ∈ [1 + δ, 2], where p′ is such that 1

p
+ 1

p′
= 1. Then there is a computationally

efficient algorithm that guarantees regret bound simultaneously for all ∀w ∈ Rd and for all
p ∈ [1 + δ, 2]:

E
[
n∑
t=1

ft(wt)−
n∑
t=1

ft(w)
]
≤ O

(
(‖w‖p + 1)Lp

√
n log((‖w‖p + 1)Lp log(d)n)/(p− 1)

)
. (9.7)

The configuration in the above theorem is described in full in Section 9.3.2 in the supplementary
material. This strategy can be trivially extended to handle p in the range (2,∞). The
inequality holds for p ≥ 1 + δ rather than for p ≥ 1 because the `1 norm is not uniformly
convex, but this is easily rectified by changing the regularizer at p = 1; we omit this for
simplicity of presentation.

We emphasize that the choice of `p norms for the result above was somewhat arbitrary —
any finite collection of norms will also work. For example, the strategy can also be applied to
matrix optimization over Rd×d by replacing the `p norm with the Schatten Sp norm. The
Schatten Sp norm has strong convexity parameter on the order of p− 1 (which matches the
`p norm up to absolute constants (Ball et al., 1994)) so the only change to practical change
to the setup in Theorem 25 will be the running time TMD. Likewise, the approach applies to
(p, q)-group norms as used in multi-task learning (Kakade et al., 2012).

Application 3: Adapting to Rank for Online PCA For the online PCA task, the
learner predicts from a class Wk =

{
W ∈ Rd×d | W � 0, ‖W‖σ ≤ 1, 〈W, I〉 = k

}
. For a fixed

value of k, such a class is a convex relaxation of the set of all rank k projection matrices.
After producing a prediction Wt, we experience affine loss functions ft(Wt) = 〈I −Wt, Yt〉,
where Yt ∈ Y :=

{
Y ∈ Rd×d | Y � 0, ‖Y ‖σ ≤ 1

}
.

We leverage an analysis of online PCA due to (Nie et al., 2013) together with MultiScale-
OCO to derive an algorithm that competes with many values of the rank simultaneously.
This gives the following result:
Theorem 26. There is an efficient algorithm for Online PCA with regret bound

E

 n∑
t=1
〈I −Wt, Yt〉 − min

W projection
rank(W )=k

n∑
t=1
〈I −W,Yt〉

 ≤ Õ(k√n) ∀k ∈ [d/2].
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For a fixed value of k, the above bound is already optimal up to log factors, but it holds for
all k simultaneously.

Application 4: Adapting to Norm for Matrix Multiplicative Weights In the
Matrix Multiplicative Weights setting (Arora et al., 2012) we consider hypothesis
classes of the form Wr =

{
W ∈ Rd×d | W � 0, ‖W‖Σ ≤ r

}
. Losses are given by ft(W ) =

〈W,Yt〉, where ‖Yt‖σ ≤ 1. For a fixed value of r, the well-known Matrix Multiplicative
Weights strategy has regret against Wr bounded by O(r

√
n log d). Using this strategy for

fixed r as a sub-algorithm for MultiScaleOCO, we achieve the following oracle inequality
efficiently:
Theorem 27. There is an efficient matrix prediction strategy with regret bound

E
[
n∑
t=1
〈Wt, Yt〉 −

n∑
t=1
〈W,Yt〉

]
≤ (‖W‖Σ + 1)

√
n log d log((‖W‖Σ + 1)n)) ∀W � 0. (9.8)

A Remark on Efficiency All of our algorithms that provide bounds of the form (9.6)
instantiate O(n) experts with MultiScaleFTPL because, in general, the worst case w for
achieving (9.6) can have norm as large as en. If one has an a priori bound — say B — on
the range at which each ft attains its minimum, then the number of experts be reduced to
O(log(B)).

9.2.3 Back to Supervised Learning

In this final section, we show that the general online optimization algorithm developed in this
chapter, MultiScaleFTPL, can also be used to develop adaptive algorithms for the general
online supervised learning setting (Section 2.3, Protocol 2). In the supervised learning setting
we measure regret against a benchmark class F = ⋃∞

k=1Fk of functions f : X → R. In this
case, the analogue of the online convex optimization oracle inequality (9.5) has the form

n∑
t=1

`(ŷt, yt)− inf
f∈Fk

n∑
t=1

`(f(xt), yt) ≤ Compn(Fk) + Penn(k) ∀k. (9.9)

Working in this setting makes clear a key feature of the meta-algorithm approach we have
developed: We can efficiently obtain online oracle inequalities for arbitrary nonlinear function
classes so long as we have an efficient algorithm for each Fk.

We obtain a supervised learning meta-algorithm by simply feeding the observed losses `(·, yt)
(which may even be non-convex) to the meta-algorithm MultiScaleFTPL in the same
fashion as MultiScaleOCO.

The resulting strategy is called MultiScaleLearning. We make the following assumptions
analogous to Assumption 3, which lead to the performance guarantee for MultiScale-
Learning given in Theorem 28 below.
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Assumption 4. The sub-algorithms used by MultiScaleLearning satisfy the following
conditions:

• For each i ∈ [N ], the iterates (ŷit)t≤n produced by sub-algorithm Algi satisfy |ŷit| ≤ Ri.

• For each i ∈ [N ], the function `(·, yt) is Li-Lipschitz on [−Ri, Ri].

• For each sub-algorithm Algi, the iterates (ŷit)t≤n enjoy a regret bound ∑n
t=1 `(ŷit, yt)−

inff∈Fi
∑n
t=1 `(f(xt), yt) ≤ Regn(i), where Regn(i) may be data- or algorithm-dependent.

Theorem 28. Suppose that the inputs to Algorithm 8 satisfy Assumption 4. Then the iterates
(ŷt)t≤n produced by the algorithm enjoy the regret bound

E
[
n∑
t=1

`(ŷit, yt)− inf
f∈Fi

n∑
t=1

`(f(xt), yt)
]
≤ E[Regn(i)] +O

(
RiLi

√
n log(RiLin/πi)

)
∀i ∈ [N ].

(9.10)

Algorithm 8
procedure MultiScaleLearning({Algi, Ri, Li}i∈[N ], π) . Collection of sub-algorithms, prior
π.

c← (Ri · Li)i∈[N ] . Sub-algorithm scale parameters.
Define ˜̀(ŷ, y) = `(ŷ, y)− `(0, y). . Center the loss function.
for t = 1, . . . , n do

Receive context xt
ŷit ← Algi((x1, y1), . . . , (xt−1, yt−1), xt) for each i ∈ [N ].
it ←MultiScaleFTPL[c, π](g1, . . . , gt−1).
Play ŷt = ŷitt .
Observe yt and let gt =

(
˜̀
t(ŷit, yt)

)
i∈[N ]

.
end for

end procedure

Online Penalized Risk Minimization In the statistical learning setting, oracle inequal-
ities for arbitrary sequences of hypothesis classes F1, . . . ,FN are readily available. Such
inequalities are typically stated in terms of complexity parameters for the classes (Fk) such as
VC dimension or Rademacher complexity. For the online learning setting, it is well-known that
sequential Rademacher complexity Rseq(F) (cf. Chapter 6) provides a sequential counterpart
to these complexity measures, meaning that it generically characterizes the minimax optimal
regret for Lipschitz losses. We will obtain an oracle inequality in terms of this parameter.
Assumption 5. The sequence of hypothesis classes F1, . . . ,FN are such that

1. There is an efficient algorithm Algk producing iterates (ŷkt )t≤n satisfying ∑n
t=1 `(ŷkt , yt)−

inff∈Fk
∑n
t=1 `(f(xt), yt) ≤ C · L · Rseq(Fk) for any L-Lipschitz loss, where C is some

constant. (an algorithm with this regret is always guaranteed to exist, but may not be
efficient).

2. Each Fk has output range [−Rk, Rk], where Rk ≥ 1 without loss of generality.

3. Rseq(Fk) = Ω(Rk

√
n) — this is obtained by most non-trivial classes.
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Theorem 29 (Online penalized risk minimization). Under Assumption 5 there is an efficient
(in N) algorithm that achieves the following regret bound for any L-Lipschitz loss:

E
[
n∑
t=1

`(ŷt, yt)− inf
f∈Fk

n∑
t=1

`(f(xt), yt)
]
≤ O

(
L · Rseq(Fk) ·

√
log(L · Rseq(Fk) · k)

)
∀k ∈ [N ].

(9.11)

As in the previous section, one can derive tighter regret bounds and more efficient (e.g.
sublinear in N) algorithms if F1,F2, . . . are nested.

Application: Multiple kernel learning
Theorem 30. Let H1, . . . ,HN be reproducing kernel Hilbert spaces for which each Hk has a
kernel K such that supx∈X

√
K(x, x) ≤ Bk. Then there is an efficient learning algorithm that

guarantees

E
[
n∑
t=1

`(ŷt, yt)−
n∑
t=1

`(f(xt), yt)
]
≤ O

(
LBk(‖f‖Hk + 1)

√
log(LBkkn(‖f‖Hk + 1))

)
∀k, ∀f ∈ Hk

for any L-Lipschitz loss, whenever an efficient algorithm is available for the norm ball in
each Hk.

9.3 Detailed Proofs

9.3.1 Multi-scale FTPL algorithm

Proof of Theorem 22. Recall that B(i) = 5ci
√
n(log(1/πi) + log(4c2

in)). Let C ={
g ∈ RN | |gi| ≤ ci ∀i ∈ [N ]

}
. Following discussion in Section 2.6, for an adaptive regret

bound of B(i) +K to be achievable by a randomized algorithm such as Algorithm 6 we need

Voco
n ([N ],B) := ⟪ inf

Pt∈∆(∆N )
sup
gt∈C

E
pt∼Pt

E
it∼pt
⟫
n

t=1
sup
i∈[N ]

[
n∑
t=1
〈eit , gt〉 −

n∑
t=1
〈ei, gt〉 − B(i)

]
≤ K.

In the context of Algorithm 6, the distributions pt above refer to the strategy pt(σt+1:n)
selected by the algorithm and Pt refers to the distribution over this strategy induced by
sampling the random variables σt+1:n.

We will develop an algorithm to certify this bound for K = 1 using the framework of adaptive
relaxations proposed by Foster et al. (2015). Define a relaxation Rel : ⋃nt=0 Ct → R via

Rel(g1:t) := E
σt+1:n∈{±1}N

sup
i∈[N ]

[
−

t∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]
.

The proof structure is as follows: We show that playing pt as suggested by Algorithm 6 with
Rel satisfies the initial condition and admissibility condition for adaptive relaxations from
Foster et al. (2015), which implies that if we play pt we will have Regn(i) ≤ B(i) + Rel(·).
Then as a final step we bound Rel(·) using a probabilistic maximal inequality, Lemma 16.
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Initial condition This condition asks that the initial value of the relaxation Rel upper
bound the worst-case value of the negative benchmark minus the bound B(i) (in other words,
the inner part of Vn with the learner’s loss removed). This is holds by definition and is trivial
to verify:

Rel(g1:n) = sup
i∈[N ]

[
−

n∑
t=1
〈ei, gt〉 − B(i)

]
.

Admissibility For this step we must show that the inequality

inf
Pt∈∆(∆N )

sup
gt∈C

E
pt∼Pt

E
it∼pt

[〈eit , gt〉+ Rel(g1:t)] ≤ Rel(g1:t−1)

holds for each timestep t, and further that the inequality is certified by the strategy of
Algorithm 6. We begin by expanding the definition of Rel:

inf
Pt∈∆(∆N )

sup
gt∈C

E
pt∼Pt

E
it∼pt

[〈eit , gt〉+ Rel(g1:t)]

= inf
Pt∈∆(∆N )

sup
gt∈C

E
pt∼Pt

E
it∼pt

[
〈eit , gt〉+ E

σt+1:n∈{±1}N
sup
i∈[N ]

[
−

t∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]]
.

Now plug in the randomized strategy given by Algorithm 6, with Eσt+1:n∈{±1}N taking the
place of Ept∼Pt . This leads to an upper bound of

sup
gt∈C

[
E

σt+1:n∈{±1}N

[
E

it∼pt(σt+1:n)
〈eit , gt〉

]
+ E

σt+1:n
sup
i∈[N ]

[
−

t∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]]
.

Grouping expectations and applying Jensen’s inequality:

≤ E
σt+1:n∈{±1}N

sup
gt∈C

[
E

it∼pt(σt+1:n)
〈eit , gt〉+ sup

i∈[N ]

[
−

t∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]]
.

Expanding the definition of pt (using its optimality in particular):

= E
σt+1:n∈{±1}N

inf
pt∈∆N

sup
gt∈C

[
〈pt, gt〉+ sup

i∈[N ]

[
−

t∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]]
.

We now apply a somewhat standard sequential symmetrization procedure. We begin by using
the minimax theorem (Section 2.6) to swap the order of infpt and supgt . To do so, we allow
the gt player to randomize, and denote their distribution by Qt ∈ ∆(C).

= E
σt+1:n∈{±1}N

sup
Qt∈∆(C)

inf
pt∈∆N

E
gt∼Qt

[
〈pt, gt〉+ sup

i∈[N ]

[
−

t∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]]
.

Since the supremum over i does not directly depend on pt, we can rewrite this expression by
introducing a (conditionally) i.i.d. copy of gt which we will denote as g′t:

= E
σt+1:n∈{±1}N

sup
Qt∈∆(C)

E
gt∼Qt

[
sup
i∈[N ]

[
inf

pt∈∆N

E
g′t∼Qt

[〈pt, g′t〉]−
t∑

s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]]
.
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Choosing pt to match ei:

≤ E
σt+1:n∈{±1}N

sup
Qt∈∆(C)

E
gt∼Qt

sup
i∈[N ]

[
E

g′t∼Qt
[〈ei, g′t〉]− 〈ei, gt〉 −

t−1∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]
.

Applying Jensen’s inequality:

≤ E
σt+1:n∈{±1}N

sup
Qt∈∆(C)

E
gt,g′t∼Qt

sup
i∈[N ]

[
〈ei, g′t〉 − 〈ei, gt〉 −

t−1∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]
.

At this point we can introduce a new Rademacher random variable εt without changing the
distribution of g′t − gt, thereby not changing the value of the game, then split the supremum:

= E
σt+1:n∈{±1}N

sup
Qt∈∆(C)

E
εt∈{±1}

E
gt,g′t∼Qt

sup
i∈[N ]

[
εt〈ei, g′t − gt〉 −

t−1∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]

≤ E
σt+1:n∈{±1}N

sup
Qt∈∆(C)

E
εt∈{±1}

E
gt∼Qt

sup
i∈[N ]

[
2εt〈ei, gt〉 −

t−1∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]

The above expression is now linear in Qt, so it may be replaced with a pure strategy:

= E
σt+1:n∈{±1}N

sup
gt∈C

E
εt∈{±1}

sup
i∈[N ]

[
2εt〈ei, gt〉 −

t−1∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]

This expression is also convex in gt, which means that the supremum will be obtained at a
vertex of C:

= E
σt+1:n∈{±1}N

sup
σt∈{±1}N

E
εt∈{±1}

sup
i∈[N ]

[
2εtσt[i]ci −

t−1∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci − B(i)
]

Now apply Theorem 31 conditioned on σt+1:n, with wi = −∑t−1
s=1〈ei, gs〉+4∑n

s=t+1 σs[i]ci−B(i).

≤ E
σt:n∈{±1}N

sup
i∈[N ]

[
−

t−1∑
s=1
〈ei, gs〉+ 4

n∑
s=t

σs[i]ci − B(i)
]

= Rel(g1:t−1).

Final value The final value of the relaxation is

Rel(·) = 2 E
σ1:n∈{±1}N

sup
i∈[N ]

[
2

n∑
t=1

σt[i]ci − 5ci
√
n(log(1/πi) + log(4c2

in))
]
≤ 2

∑
i∈[N ]

πi
4c2
in
≤ 1.

To show the first inequality we have applied a maximal inequality, Lemma 16, by recognizing
that Rel(·) is a supremum of a random process. Namely, we can write Rel(·) in the
form E supi∈[N ]{Xi −B(i)} with Xi = 2∑n

t=1 σt[i]ci. The standard mgf bound of E eλX ≤
eλ

2(b−a)2/8 for mean-zero random variables X with a ≤ X ≤ b (Boucheron et al., 2013), along

150



with independence of the Rademacher random variables in Xi, implies that Xi enjoys an mgf
bound of

E eλXi ≤ e2c2i λ
2n.

So to prove the result it suffices to take hi = 4c2
in and p = 2 in the statement of Lemma 16

and note that B(i) ≥ (2 + 1/p)h1/p
i (log(hi) + log(1/πi))1−1/p in the notation of the lemma.

The only additional detail to verify is that, since it was assumed that ci ≥ 1 for all i and
since n ≥ 1 by definition, the condition hi/πi ≥ e required by Lemma 16 is satisfied.

Computational efficiency We briefly sketch how the min-max optimization problem in
the learner’s strategy can be computed efficiently. Recall that the optimization problem is

min
p∈∆N

sup
gt:|gt[i]|≤ci

[
〈p, gt〉+ sup

i∈[N ]

[
−

t∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci −B(i)
]]

= min
p∈∆N

sup
i∈[N ]

sup
gt:|gt[i]|≤ci

[
〈p, gt〉 −

t∑
s=1
〈ei, gs〉+ 4

n∑
s=t+1

σs[i]ci −B(i)
]

Let Gt−1(i) = ∑t−1
s=1 gs[i]. Since the quantity in the brackets above is linear in gt and there

are no interactions between coordinates, we can verify that conditioned on i the max over gt
is obtained via

= min
p∈∆N

sup
i∈[N ]

[
〈p, c〉+ (1− 2p[i])ci −Gt−1(i) + 4

n∑
s=t+1

σs[i]ci −B(i)
]

= min
p∈∆N

sup
i∈[N ]

[〈p, c〉+ 〈a, ei〉 − 2〈p, diag(c)ei〉],

where a[i] = ci −Gt−1(i) + 4∑n
s=t+1 σs[i]ci −B(i). We can now employ a standard reduction

from saddle point optimization to linear programming, i.e.

minimize 〈p, c〉+ s

subject to s ≥ 〈a, ei〉 − 2〈p, diag(c)ei〉 ∀i.
p ∈ ∆N .

Assuming that mini ci ≥ 1, this linear program can be solved to accuracy ε by interior point
methods (e.g. Renegar (1988)) in time O(N3.5 log(ε−1 maxi ci)) or by Mirror-Prox (Nemirovski,
2004) in time O(Nε−1 maxi ci). Since our rates scale as

√
n we can set ε = 1/(

√
nmaxi ci) to

conclude the result.

As a final implementation detail, we remark that similar to the FTPL algorithm in Rakhlin
et al. (2012) one can draw each perturbation σt[i], from the distribution N (0, 1) instead
of using Rademacher random variables. This allows one to replace each sum ∑n

s=t σs[i]
with a draw from N (0, n − t) and therefore avoid spending O(n) time per step sampling
perturbations. We have omitted the details because — for most values of c and N used in
our applications, at least — the time required to solve the saddle point optimization problem
dominates the runtime, not the time to sample perturbations.
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Theorem 31. For any w ∈ RN , any c ∈ RN
+ ,

sup
σ∈{±1}N

E
ε∈{±1}

max
i∈[N ]
{wi + 2εσici} ≤ E

σ∈{±1}N
max
i∈[N ]
{wi + 4σici}. (9.12)

Proof of Theorem 31. Fix any σ ∈ {±1}N . Let i1 = arg maxi∈[N ]{wi + 2σici} and i−1 =
arg maxi∈[N ]{wi − 2σici}. Then it is easy to see that

E
ε

max
i∈[N ]
{wi + 2εσici} = E

ε
max

i∈{i1,i−1}
{wi + 2εσici} ≤ E

σ′∈{±1}N
max

i∈{i1,i−1}
{wi + 4σ′ici}

≤ E
σ′∈{±1}N

max
i∈[N ]
{wi + 4σ′ici}.

The central inequality above follows by Lemma 17 with the pair (w, 2c). Since the above
bound holds for any σ, we conclude that (9.12) holds.

Lemma 17. For any pair (w, c) where w ∈ RN any c ∈ RN
+ , the inequality

sup
σ∈{±1}N

E
ε∈{±1}

max
i∈[N ]
{wi + εσici} ≤ E

σ∈{±1}N
max
i∈[N ]
{wi + 2σici}. (9.13)

holds when N = 2.

Proof of Lemma 17. In this proof we adopt the notation that for any element j ∈ [2],
−j denote the other element. Say the pair (w, c) is dominated if there exists j for which
wj − cj ≥ w−j + c−j. Note that this of course implies wj + cj ≥ w−j + c−j as well, since c is
non-negative.

Dominated case Suppose (w, c) is dominated by index j. Then (9.13) holds trivially for
any K ∈ R by

sup
σ∈{±1}N

E
ε

max
i∈[N ]
{wi + εσici} = wj = max

i∈[N ]
{wi +K E

σ∈{±1}N
σici} ≤ E

σ∈{±1}N
max
i∈[N ]
{wi +Kσici}.

We now focus on the trickier “not dominated” case.

Rescaling doesn’t induce domination We first observe that if (w, c) does is not dom-
inated, (w,Bc) is not dominated either for any B ≥ 1. Let j be the index for which
wj+cj ≥ w−j+c−j which implies wj−cj ≤ w−j+c−j because (w, c) is not dominated. Observe
that if (w,Bc) is dominated we either have wj−Bcj ≥ w−j +Bc−j or w−j−Bc−j ≥ wj +Bcj .
The first case cannot hold because B ≥ 1 and we already know that (w, c) is not dominated.
The second case in particular implies w−j ≥ wj, so we must have had cj ≥ c−j to begin with.
But in that case we will still have wj +Bcj ≥ w−j +Bc−j which contradicts the domination.

Note: It is good to keep in mind that while rescaling does not induce domination, it may not
be the case in general that wj +Bcj ≥ w−j +Bc−j even though wj + cj ≥ w−j + c−j. That
is, the “leader” may change after rescaling.
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LHS of (9.13) for (w, c) not dominated When (w, c) is not dominated we have

sup
σ∈{±1}N

E
ε

max
i∈[N ]
{wi + εσici} = 1

2(w1 + c1) + 1
2(w2 + c2).

RHS of (9.13) for (w, c) not dominated We will consider the RHS of (9.13) for (w, c′) :=
(w,Bc) for some B ≥ 1 to be decided. By the argument above, the pair (w, c′) is also not
dominated. For the remainder of the proof, 1 will denote the index for which w1 +c′1 ≥ w2 +c′2.
Because the pair is not dominated, the value the RHS takes can be classified into two cases
based on the relationship between c′ and w.

• Case 1: w1 − c′1 ≤ w2 − c′2:
In this case there is equal probability that the process takes on value w2− c′2 or w2 + c′2
conditioned on the event that σ1 = −1, so we have the equality:

E
σ∈{±1}N

max
i∈[N ]
{wi + σic

′
i} = 1

2(w1 + w2) + 1
2c
′
1

Furthermore, Case 1 implies c′1 ≥ c′2, which leads to an inequality:

≥ 1
2(w1 + w2) + 1

4(c′1 + c′2).

• Case 2: w1 − c′1 ≥ w2 − c′2:
In this case, conditioned on the event that σ1 = −1, there is equal probability that the
process takes on value w2 + c′2 or w1 − c′1 , so the equality becomes:

E
σ∈{±1}N

max
i∈[N ]
{wi + σic

′
i} = 1

2(w1 + c′1) + 1
4(w2 + c′2) + 1

4(w1 − c′1)

Case 2 implies that w1 ≥ w2, because we may add the inequalities w1 + c′1 ≥ w2 + c′2
and w1 − c′1 ≥ w2 − c′2. This gives an inequality:

≥ 1
2(w1 + w2) + 1

4(c′1 + c′2).

Combining our results for the two cases, we have that for any vector c′, so long as (w, c′) is
not dominated,

E
σ∈{±1}N

max
i∈[N ]
{wi + σic

′
i} ≥

1
2(w1 + w2) + 1

4(c′1 + c′2).

In particular, choosing B = 2 implies (9.13) in the non-dominated case:

E
σ∈{±1}N

max
i∈[N ]
{wi + 2σici} ≥

1
2(w1 + w2) + 1

2(c1 + c2)

= sup
σ∈{±1}N

E
ε

max
i∈[N ]
{wi + εσici}.
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Final result Combining the dominated and non-dominated results we have that for any
(w, c).

sup
σ∈{±1}N

E
ε

max
i∈[N ]
{wi + εσici} ≤ E

σ∈{±1}N
max
i∈[N ]
{wi + 2σici}.

Proof of Lemma 16. Let B(i) = Ch
1/p
i (log(hi) + log(1/πi))1−1/p for some constant C to

be decided later. One should verify that log(hi) + log(1/πi) is always non-negative by the
assumption that hi/πi ≥ e, which will be used repeatedly. To begin, observe that

E sup
i∈[N ]
{Xi −B(i)} ≤ E sup

i∈[N ]
[Xi −B(i)]+,

where [x]+ = max{x, 0}. By non-negativity of [x]+ it further holds that

≤ E
∑
i∈[N ]

[Xi −B(i)]+.

Fixing an arbitrary sequence (λi)i∈[N ] with λi > 0, the basic inequality max{a, b} ≤ 1
λ

log(eλa+
eλb) implies the following upper bound:

≤ E
∑
i∈[N ]

1
λi

log
(
1 + eλi(Xi−B(i))

)
.

Apply Jensen’s inequality:

≤
∑
i∈[N ]

1
λi

log
(
1 + E eλi(Xi−B(i))

)
.

Now use the moment bound assumed in the lemma statement:

≤
∑
i∈[N ]

1
λi

log
(

1 + e(λ
p
i hi−λiB(i))

)
.

Lastly, apply the inequality log(1 + x) ≤ x for x ≥ 0:

≤
∑
i∈[N ]

exp(λpihi − λiB(i) + log(1/λi)).

We now take λi =
(

log(hi)+log(1/πi)
hi

)1/p
and bound each exponent in the sum above. Using the

definition of B(i):

λpihi − λiB(i) + log(1/λi) = log(1/λi)− (C − 1)(log(1/πi) + log(hi)).

Next observe that
log(1/λi) = 1

p
log
(

hi
log(hi/πi)

)
≤ 1
p

log(hi),
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where we have used that hi/πi ≥ e. With this, and using that log(1/πi) ≥ 0, we have
λpihi − λiB(i) + log(1/λi) ≤ − (C − 1− 1/p)(log(1/πi) + log(hi)).

Taking C ≥ 2 + 1/p and using this bound in the summation over i yields the result:

E sup
i∈[N ]
{Xi −B(i)} ≤

∑
i∈[N ]

πi
hi
.

9.3.2 Proofs for Section 9.2.2

Proof of Theorem 23. First, we verify that the loss sequence (gt)t≤n is such that the
regret bound derived for MultiScaleFTPL applies. In particular, we need to verify that
|gt[i]| ≤ ci for each i. To this end, fix an index i ∈ [N ], and note that since ft is Li-Lipschitz
on Wi with respect to the norm ‖·‖(i) we have

|gt[i]| = |ft(wit)− ft(0)| ≤ Li
∥∥∥wit − 0

∥∥∥
(i)
≤ LiRi ≤ LiRi = ci,

as required. Also, it was assumed that ci = LiRi ≥ 1, as required for Theorem 22.

Now, recall that (pt) is the sequence of distributions produced by the meta-algorithm. The
algorithm’s total loss with respect to the centered iterates (f̃t) is given by

n∑
t=1

f̃t(witt ) =
n∑
t=1
〈eit , gt〉,

where this equality is due to the construction of the losses (gt)t≤n given to MultiScaleFTPL.
The regret bound for MultiScaleFTPL now implies that

E
[
n∑
t=1
〈eit , gt〉 − min

i∈[N ]

{
n∑
t=1

gt[i] +O
(
RiLi

√
n log(RiLin/πi)

)}]
≤ 0,

where we have obtained this inequality by substituting the value of the vector c constructed
by MultiScaleOCO into the regret bound (9.3) for MultiScaleFTPL. Now, observe
that for each i we have

n∑
t=1

gt[i] =
n∑
t=1

f̃t(wit) ≤ inf
w∈Wi

n∑
t=1

f̃t(w) + Regn(i),

where we have used the definition of gt and the regret bound assumed on the sub-algorithm.
Combining these inequalities, we have

E
[
n∑
t=1

f̃t(witt )− min
i∈[N ]

{
inf
w∈Wi

n∑
t=1

f̃t(w) + Regn(i) +O
(
RiLi

√
n log(RiLin/πi)

)}]
≤ 0.

Finally, observe that since f̃t(w) = ft(w)− ft(0), the above is equivalent to

E
[
n∑
t=1

ft(witt )− min
i∈[N ]

{
inf
w∈Wi

n∑
t=1

ft(w) + Regn(i) +O
(
RiLi

√
n log(RiLin/πi)

)}]
≤ 0.
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Mirror Descent Online Mirror Descent is the standard algorithm for online linear op-
timization over convex sets. It is parameterized by a convex set W, learning rate η, and
strongly convex regularizer R :W → R. We define the update MirrorDescent(η,W ,R)
as follows.
First, set w1 = arg minw∈W R(w). Then, for each time t ∈ [n]:

• Receive gradient gt and let w̃t+1 satisfy ∇R(w̃t+1) = ∇R(wt)− ηgt.

• Set wt+1 = arg minw∈W DR(w | w̃t+1).
Fact 1 (Mirror Descent (e.g. Hazan (2016))). Let (wt) be the iterates produced by
MirrorDescent(η,W ,R) on a sequence of vectors (gt)t≤n. If R is λ-strongly convex
with respect to a norm ‖·‖R, the iterates satisfy

n∑
t=1
〈wt − w, gt〉 ≤

η

2λ

n∑
t=1
‖gt‖2

R,? + 1
η
R(w) ∀w ∈ W . (9.14)

Proof of Theorem 24. Recall that each sub-algorithm Algi runs Mirror Descent over a
ball in (B, ‖·‖) of radius Ri using the regularizer R(w) = 1

2‖w‖
2. From the regret bound for

Mirror Descent (1), the meta-algorithm’s choice of Mirror Descent parameters for Algi (in
particular, the choice ηi = Ri

L

√
λ
n
) guarantees that

n∑
t=1

ft(wit)− inf
w∈Wi

n∑
t=1

ft(w) ≤ O(RiL
√
n/λ).

Combined with the regret bound for MultiScaleOCO (Theorem 23, noting that RiLi =
RiL ≥ 1), this implies that the meta-algorithm’s regret satisfies

E
[
n∑
t=1

ft(witt )− min
i∈[N ]

{
inf
w∈Wi

n∑
t=1

ft(w) +O(RiL
√
n/λ) +O

(
RiL

√
n log(RiLn/πi)

)}]
≤ 0.

Which, using that πi = 1/(n+ 1) and combining terms, further implies

E
[
n∑
t=1

ft(witt )− min
i∈[N ]

{
inf
w∈Wi

n∑
t=1

ft(w) +O
(
RiL

√
n log(RiLn)/λ

)}]
≤ 0.

Now, recall that i ∈ [n+ 1], and that Ri = ei−1. Consider the algorithm’s regret against a
comparator w. For now, assume that w satisfies 1 ≤ ‖w‖ ≤ en — we will see shortly that
this is without loss of generality. Let i?(w) = min{i | w ∈ Wi}. Then the regret bound above
implies

E
[
n∑
t=1

ft(witt )−
{

n∑
t=1

ft(w) +O

(
Ri?(w)L

√
n log

(
Ri?(w)Ln

)
/λ

)}]
≤ 0.

Furthermore, since Ri = ei−1, we have that Ri?(w) ≤ e‖w‖, and so

E
[
n∑
t=1

ft(witt )−
{

n∑
t=1

ft(w) +O
(
‖w‖L

√
n log(‖w‖Ln/)λ

)}]
≤ 0.

156



This is exactly the regret bound we wanted. Now, the case where ‖w‖ ≤ 1 is handled by
simply noting i?(w) = 1 and writing R1 = 1 ≤ 1 + ‖w‖, which gives the ‖w‖+ 1 factor as
follows:

E
[
n∑
t=1

ft(witt )−
{

n∑
t=1

ft(w) +O
(

(‖w‖+ 1)L
√
n log((‖w‖+ 1)Ln/)λ

)}]
≤ 0.

To handle the case where ‖w‖ ≥ en we appeal to Corollary 12 with c = L
√
n and γ = 1/2,

which shows that it suffices to consider only ‖w‖ ≤ exp
((

Ln
c

)1/γ
)

= en. Note that the

constants appearing in the regret bound above, both inside the O(·) and inside the
√

log(·)
are worse than those with which we instantiate Corollary 12. This is not an issue because
worse constants only reduce the radius that must be considered in the corollary.
Lemma 18. Let F : R+ → R+ be given. Suppose the loss sequence (ft)t≤n is L-Lipschitz
with respect to ‖·‖?. Then a regret bound of the form

n∑
t=1

ft(wt)−
n∑
t=1

ft(w) ≤ F (‖w‖) ∀w ∈ B (9.15)

holds if the restricted regret bound
n∑
t=1

ft(wt)−
n∑
t=1

ft(w) ≤ F (‖w‖) ∀f : ‖f‖ ≤ α?, (9.16)

holds, where α? is the greatest non-negative number for which F (α?)− α?Ln ≥ F (0).

Proof of Lemma 18. Assume wlog that ft(0) = 0 for each t. This is possible because
n∑
t=1

ft(wt)−
n∑
t=1

ft(w) =
n∑
t=1

(ft(wt)− ft(0))−
n∑
t=1

(ft(w)− ft(0)).

To begin, observe that (9.15) is equivalent to
n∑
t=1

ft(wt) ≤ inf
w∈B

{
n∑
t=1

ft(w) + F (‖w‖)
}
.

By selecting w = 0, ft(0) = 0 implies that the infimum on the right is always upper bounded
in value by F (0). In the other direction, Lipschitzness of the losses along with ft(0) = 0
implies that the infimum is lower bounded as

inf
w∈B

{
n∑
t=1

ft(w) + F (‖w‖)
}
≥ inf

w∈B
{−L‖w‖n+ F (‖w‖)} = inf

α≥0
{−αLn+ F (α)}.

Therefore if α ≥ α?, the lower bound −αLn + F (α) will be sub-optimal compared to the
upper bound of F (0) obtained by choosing α = 0.
Corollary 12. When F (r) = c · (r + 1) log(r + 1)γ for γ > 0, it is sufficient to consider

n∑
t=1

ft(wt)−
n∑
t=1

ft(w) ≤ F (‖w‖) ∀w : ‖w‖ ≤ exp
((

Ln

c

)1/γ)
. (9.17)
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Proof of Corollary 12. Note that F (0) = 0. Let r denote the minimizer of F (α)− α · a
(where a = Ln). Differentiating this expression yields

a = c
(
log(r + 1)γ + γ log(r + 1)γ−1

)
,

which further implies
log(r + 1)γ = a

c
· 1

1 + γ/ log(r + 1) ≤
a

c
.

Rearranging, we have r ≤ exp((a/c)1/γ) − 1. Since F (α) − α · a is strictly convex, this
function is increasing above r. To conclude, we guess an upper bound on the value of α?:
α := exp((a/c)1/γ)− 1. Substituting this value in, we have

F (α)− α · a ≥ a exp((a/c)1/γ)− a · exp((a/c)1/γ) = 0 = F (0),

which yields the result.

Proof of Theorem 25. We only sketch the details of this proof as it follows Theorem 24
very closely.

We first describe sub-algorithm configuration for MultiScaleOCO that achieves the claimed
regret bound. Our strategy will be to take a discretization the range of p values [1 + δ, 2], and
produce a set of sub-algorithms for each p in this discrete set. For a fixed p, the construction
of the set of sub-algorithms will be exactly is in Theorem 24. The discrete set of ps will have
the form pk = 1 + δ + min{(k − 1) · ε, (1− δ)}, for ε = 1/ log(d) and k ∈ [1, . . . , K], where
K = d(1− δ)/εe+ 1 (in particular k ≤ log(d) + 1).

For a fixed k, the norm ‖·‖pk has that 1
2‖·‖

2
pk

is (pk − 1)-strongly convex with respect to itself
(Kakade et al., 2009a). With this in mind, we create a set of N := K(n+ 1) sub-algorithms,
which we will index by pairs (k, j) ∈ [K]× [n+ 1] instead of i ∈ [K(n + 1)] for notational
convenience.

• For each k ∈ [K]:

– Lk = Lpk .

– For each j ∈ {1, . . . , n+ 1}:

∗ Set Rj = ej−1.

∗ Take W(k,j) =
{
w ∈ B | ‖w‖pk ≤ Rj

}
, η(k,j) = Rj

Lk

√
λpk
n

, where λpk = (pk − 1).

∗ Let Algj = MirrorDescent(η(k,j),W(k,j), ‖·‖2
pk

).

• π = Uniform([K]× [n+ 1]).

Clearly the total number of sub-algorithms and hence the running time scales as O(n · log(d)).
Referring back to the proof of Theorem 24, and letting (kt, jt) denote the index pair chosen
by MultiScaleOCO in round t, it is clear that for a fixed k, the algorithm satisfies for all
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w ∈ Rd

E
[
n∑
t=1

ft(w(kt,jt)
t )

−
{

n∑
t=1

ft(w) +O

(
(‖w‖pk + 1)Lpk

√
n log((‖w‖pk + 1)Lpkn log(d))/(pk − 1)

)}]
≤ 0.

In fact, the regret guarantee for MultiScaleOCO implies that

E
[
n∑
t=1

ft(w(kt,jt)
t )

− min
k∈[N ]

{
n∑
t=1

ft(w) +O

(
(‖w‖pk + 1)Lpk

√
n log((‖w‖pk + 1)Lpkn log(d))/(pk − 1)

)}]
≤ 0.

We now appeal to the choice of discretization to deduce that

E
[
n∑
t=1

ft(w(kt,jt)
t )

− min
p∈[1+δ,2]

{
n∑
t=1

ft(w) +O

(
(‖w‖p + 1)Lp

√
n log((‖w‖p + 1)Lp log(d)n)/(p− 1)

)}]
≤ 0.

Suppose there is some p ∈ [1 + δ, 2] of interest. Let k be the greatest integer for which pk ≤ p.
We claim that the bound

E
[
n∑
t=1

ft(w(kt,jt)
t )−

{
n∑
t=1

ft(w) +O

(
(‖w‖pk + 1)Lpk

√
n log((‖w‖pk + 1)Lpkn log(d))/(pk − 1)

)}]
≤ 0,

implies the desired result. By duality we have that ‖w‖pk ≥ ‖w‖p and Lpk ≤ Lp. To conclude,
observe that ‖w‖pk/‖w‖p ≤ ‖w‖pk/‖w‖pk+1 ≤ dε = d1/ log(d) = O(1), so the norm terms in the
bound above are within constant factors of the desired bound.

Proof of Theorem 26. Recall that for fixed k, the learner predicts from a class

Wk =
{
W ∈ Rd×d | W � 0, ‖W‖σ ≤ 1, 〈W, I〉 = k

}
,

and experiences affine losses ft(Wt) = 〈I −Wt, Yt〉, where Yt ∈ Y :={
Y ∈ Rd×d | Y � 0, ‖Y ‖σ ≤ 1

}
.

The regret for this game is given by

sup
W∈Wk

[
n∑
t=1
〈I −Wt, Yt〉 −

n∑
t=1
〈I −W,Yt〉

]
. (9.18)

From Nie et al. (2013), we have that for fixed k the strategy Matrix Exponentiated Gradient
has regret bounded by

O
(

min
{√

nk2 log(n/k),
√
n(d− k)2 log(n/(d− k))

})
= Õ

(√
nmin{k, d− k}2

)
.
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Note: The variant of Matrix Exponentiated Gradient that obtains this strategy uses
either losses or gains depending on the value of k. See Nie et al. (2013) for more details.

The configuration with which we invoke MultiScaleOCO is:

• For each i ∈ [dlog(d/2)e+ 1]:

– Set Ri = ei−1, Li = 1.

– Wi =
{
W ∈ Rd×d | W � 0, ‖W‖σ ≤ 1, 〈W, I〉 = Ri

}
– Take Algi = Matrix Exponentiated Gradient(Wi) as described in Nie et al.

(2013).

• π = Uniform([dlog(d/2)e+ 1]).

As in Theorem 24 and Theorem 25, choosing Ri to be spaced exponentially is sufficient to
guarantee that there is a sub-algorithm whose regret is within a constant factor e of Õ(k

√
n)

for any choice of the rank k.

All that remains is that the losses of the sub-algorithms satisfy the claimed upper bound
Ri. Observe that MultiScaleOCO works with centered loss f̃t(W ) = −〈W,Yt〉. For any
W ∈ Wk, we have

|〈W,Yt〉| ≤ ‖Yt‖σ‖W‖Σ ≤ 1 ·Rk,

so the condition is satisfied.

Proof of Theorem 27. We will use a meta-algorithm strategy closely resembling that of
the smooth Banach space setting. The only difference is that ‖·‖Σ is not smooth, so Matrix
Multiplicative Weights, which uses the log-trace-exponential function as a surrogate for
‖·‖Σ, is used as the sub-algorithm instead of working with ‖·‖Σ directly.

We use the version of Matrix Multiplicative Weights stated in Hazan et al. (2012)
Theorem 13, which uses classes of the form Wr =

{
W ∈ Rd×d | W � 0, ‖W‖Σ ≤ r

}
and has

regret against Wr bounded by O(r
√
n log d) whenever each loss matrix Yt has ‖Yt‖σ ≤ 1.

Using this strategy for fixed r as a sub-algorithm for MultiScaleOCO, we achieve the
following oracle inequality efficiently:

For each i ∈ [n+ 1]:

• Set Ri = 2i−1

• Li = 1 (we are assuming ‖Yt‖σ ≤ 1).

• Wi =
{
W ∈ Rd×d | W � 0, ‖W‖Σ ≤ Ri

}
• Algi = Matrix Multiplicative Weights(Wi)

Finally, we set π = Uniform([n+ 1]). That this configuration is sufficient follows from the
doubling analysis given in the proof of Theorem 24. Losses are once again bounded via
|〈W,Yt〉| ≤ ‖W‖Σ‖Yt‖σ ≤ Ri for W ∈ Wi.
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9.3.3 Proofs from Section 9.2.3

Proof of Theorem 28. This theorem is an immediate consequence of Theorem 23, using
the absolute value |·| as the norm. The only significant detail one must check is that the
proof of Theorem 23 uses the regret statement for each sub-algorithm as a black box, and so
the nonlinearity of the comparator F does not change the analysis.

Proof of Theorem 29. This is a corollary of Theorem 28. That theorem, configured with
one sub-algorithm for each class Fk and with Lk = L, Rk = Rk, and πk = 1/k2, implies

E
[
n∑
t=1

`(ŷit, yt)− inf
f∈Fk

n∑
t=1

`(f(xt), yt)
]
≤ E[Radn(Fk)] +O

(
RkL

√
n log(RkLnk)

)
∀i ∈ [N ].

(9.19)
The final regret bounded stated follows from the assumed growth rate on Rad(Fk).

Proof of Theorem 30. We briefly sketch the construction as follows:

1. For each Hk, construct a sequence of nested subclasses (norm balls) as precisely as in
the proof of Theorem 24. There will be O(n) sub-algorithms for each such class.

2. For each sub-algorithm in class k, take the prior weight π proportional to 1/nk2.

Using the analysis from Theorem 24 — namely that for each norm ‖·‖Hk it is sufficient to
only consider predictors with norm bounded by en — , one can see that the result follows
from Theorem 28.

9.4 Chapter Notes

This chapter is based on Foster et al. (2017a). For the special case of model selection in
Banach spaces, faster algorithms were subsequently presented in Cutkosky and Orabona
(2018) and Foster et al. (2018c).

Bubeck et al. (2017) simultaneously developed a multi-scale experts algorithm which could
also be used in our framework. Their regret bound has sub-optimal dependence on the
prior distribution over experts, but their algorithm is more efficient and is able to obtain
multiplicative regret guarantees.

Detailed Discussion of Related Work There are two directions in parameter-free online
learning that have been explored extensively. The first considers bounds of the form (9.2);
namely, the Hilbert space version of the more general setting explored in Section 9.2.2.
Beginning with Mcmahan and Streeter (2012), which obtained a slightly looser rate than
(9.2), research has focused on obtaining tighter dependence on ‖w‖2 and log(n) in this type
of bound (McMahan and Abernethy, 2013; McMahan and Orabona, 2014; Orabona, 2014;
Orabona and Pál, 2016); all of these algorithms run in linear time per update step. Cutkosky
and Boahen (2016, 2017) extended these results to the case where the Lipschitz constant
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is not known in advance. These works give lower bounds for general norms, but only give
efficient algorithms for Hilbert spaces.

The second direction concerns so-called “quantile bounds” (Chaudhuri et al., 2009; Koolen
and van Erven, 2015; Luo and Schapire, 2015; Orabona and Pál, 2016) for experts setting,
where the learner’s decision set W is the simplex ∆d and losses are bounded in `∞. The
multi-scale machinery developed in the present work is not needed to obtain bounds for this
setting because the losses are uniformly bounded across all model classes. Indeed, Foster
et al. (2015) recovered a basic form of quantile bound using the vanilla multiplicative weights
strategy as a meta-algorithm. It is not known whether the more sophisticated data-dependent
quantile bounds given in Koolen and van Erven (2015); Luo and Schapire (2015) can be
recovered in the same fashion.
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Chapter 10

Logistic Regression, Classification,
and Boosting

This chapter addresses adaptivity to misspecification in statistical learning, and provides
new guarantees for the fundamental statistical task of logistic regression. Logistic regression
was originally introduced for binary classification in a well-specified statistical model where
conditional class probabilities are realized by the logistic function (Cox, 1958). Agnostic
learning guarantees for this setting imply generalization even when this assumption does
not hold, adapting between the “nice” case where the model is well-specified and the purely
noisy setting. Unfortunately, fast rates for learning linear predictors in this setting exhibit
exponential dependence on the predictor norm, and Hazan et al. (2014) showed that this is
unimprovable.

Starting with the simple observation that the logistic loss is 1-mixable, we design a new efficient
improper learning algorithm for logistic regression that circumvents the aforementioned lower
bound with a regret bound exhibiting a doubly-exponential improvement in dependence on
the predictor norm. This provides a positive resolution to a variant of the COLT 2012
open problem of McMahan and Streeter (2012) when improper learning is allowed. This
improvement is obtained both in the online setting and, with some extra work, in the batch
statistical setting with high probability. We also show that the improved dependence on
predictor norm is near-optimal, and use the equivalence of online prediction and martingale
inequalities developed in Part II to give information-theoretic bounds on the optimal rates
for improper logistic regression with general function classes. This characterizes the extent to
which our improvement for linear classes extends to other parametric and even nonparametric
settings.

Beyond the statistical learning setting, the improved logistic regression algorithm we develop
yields the following applications: (a) we give algorithms for online bandit multiclass learning
with the logistic loss with an Õ(

√
n) relative mistake bound across essentially all parameter

ranges, thus providing a solution to the COLT 2009 open problem of Abernethy and Rakhlin
(2009), and (b) we give an adaptive algorithm for online multiclass boosting with optimal
sample complexity, thus partially resolving an open problem of Beygelzimer et al. (2015) and
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Jung et al. (2017).

10.1 Background

Logistic regression is a classical model in statistics used for estimating conditional probabilities
(Berkson, 1944). Also known as conditional maximum entropy model (Berger et al., 1996),
logistic regression has been extensively studied in statistics and machine learning and has
been widely used in practice both for binary classification and multi-class classification in a
variety of applications.

The basic logistic regression problem consists of learning a linear predictor with performance
measured by the logistic loss. In the online setting, when the hypothesis class is that of
d-dimensional linear predictors with `2 norm bounded by B, there are two main algorithmic
approaches to logistic regression: Online Gradient Descent (Zinkevich, 2003; Shalev-Shwartz
and Singer, 2007; Nemirovski et al., 2009), which admits a regret guarantee of O(B

√
n)

over n rounds, and Online Newton Step (Hazan et al., 2007), whose regret bound is in
O(deB log(n)). While the latter bound is logarithmic in n, its poor dependence on B makes
it weaker and guarantees an improvement only when B � 1

2 log(n). The question of whether
this dependence on B could be improved was posed as an open problem in COLT 2012 by
McMahan and Streeter (2012). Hazan et al. (2014) answered this in the negative, showing a
lower bound of Ω(

√
n) for B ≥ Ω(log(n)).

The starting point for this work is a simple observation: In the online setting, the logistic
loss, when viewed as a function of the prediction and the true outcome, is 1-mixable (see
Section 10.1.1 for definitions). This observation can be used in conjunction with Vovk’s
Aggregating Algorithm (Vovk, 1995), which leverages mixability in order to achieve regret
bounds scaling logarithmically in an appropriate notion of complexity of the space of predictors,
and can be implemented in polynomial time in relevant parameters using MCMC methods
(Section 10.2). Mixability and efficient implementability open the door to fast rates for online
logistic regression and related problems via improper learning: using predictions that may
not be linear in the instances xts. This algorithm circumvents the lower bound of Hazan et al.
(2014) via improper learning and attains a substantially more favorable regret guarantee
of O(d log(Bn)); this is a doubly-exponential improvement of the dependence on the scale
parameter B. This algorithm provides a positive resolution to to a variant of the open
problem of McMahan and Streeter (2012) where improper predictions are allowed.

This improper learning observation leads to a series of new results for agnostic statistical
learning. First, we show how to convert the online improper logistic regression algorithm into
a agnostic statistical learning algorithm admitting a high-probability excess risk guarantee
of O(d log(Bn)/n) (Section 10.3). While it is straightforward to achieve such a result in
expectation using standard online-to-batch conversion techniques, the high-probability bound
is more technically challenging. This is achieved using a new technique based on a modified
version of the “boosting the confidence” scheme proposed by Mehta (2017) for exp-concave
losses. We also prove a lower bound showing that the logarithmic dependence on B of
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the guarantee of our new algorithm cannot be improved. Finally, we show how to (non-
constructively) generalize the log(B) dependence on predictor norm from linear to arbitrary
function classes via sequential symmetrization and chaining arguments (Section 10.7.3). Our
general bound indicates that the extent to which dependence on the predictor range B can be
improved for general classes is completely determined by their sequential covering numbers.

The basic improper logistic regression algorithm we present in this chapter also resolves
two open problems regarding adaptivity to margin in bandit multiclass classification, and
boosting. First, the technique provides an algorithm (Section 10.5) for the online multiclass
learning with bandit feedback problem (Kakade et al., 2008) with an Õ(

√
n) relative mistake

bound with respect to the multiclass logistic loss. This algorithm provides a solution to an
open problem of Abernethy and Rakhlin (2009), improving upon the previous algorithm of
Hazan and Kale (2011) by providing the Õ(

√
n) mistake bound guarantee for all possible

ranges of parameter sets. Second, the technique provides a new online multiclass boosting
algorithm (Section 10.7.5) with optimal sample complexity, thus partially resolving an open
problem from (Beygelzimer et al., 2015; Jung et al., 2017) (the algorithm is sub-optimal
in the number of weak learners it uses, though it is no worse in this regard than previous
adaptive algorithms).

10.1.1 Preliminaries

For multiclass classification, the number of output classes is K and the set of output classes is
denoted by [K] := {1, 2, . . . , K}. Linear predictors are parameterized by weight matrices in
RK×d so that for an input vector x ∈ X , Wx ∈ RK is the vector of scores assigned by W to the
classes in [K]. For a weight matrix W and k ∈ [K], we denote by Wk the k-th row of W . The
space of parameter weight matrices is a convex set W ⊆ {W ∈ RK×D| ∀k ∈ [K], ‖Wk‖ ≤ B}
for some known parameter B > 0. Thus for all x ∈ X and W ∈ W , we have ‖Wx‖∞ ≤ BR.

Define the softmax function σ : RK → ∆K via σ(z)k = ezk∑
j∈[K] e

zj for k ∈ [K]. We also define
a pseudoinverse for σ via σ+(p)k = log(pk) which has the property that for all p ∈ ∆K , we
have σ(σ+(p)) = p and ∑

k∈[K] e
σ+(p)k = 1. The multiclass logistic loss, also referred to as

softmax-cross-entropy loss, is defined as ` : RK × [K]→ R as `(z, y) := − log(σ(z)y).

It will be convenient to overload notation and define a weighted version of the multiclass
logistic loss function as follows: let Y :=

{
y ∈ RK

+ | ‖y‖1 ≤ L
}

for some known parameter
L > 0. Then the weighted multiclass logistic loss function ` : RK × Y → R is defined by
`(z, y) = −∑k∈[K] yk log(σ(z)k). It can also be seen by straightforward manipulation that
the above definition is equivalent to `(z, y) = ∑

j∈[K] yj log
(
1 +∑

k 6=j e
zk−zj

)
.

In the binary classification setting, the standard definition of the logistic loss function is
(superficially) different: the label set is is {−1, 1}, and the logistic loss ` : R× {−1, 1} → R
is defined as `bin(z, y) = log(1 + exp(−yz)). Linear predictors are parameterized by weight
vectors w ∈ Rd with ‖w‖2 ≤ B, and the loss for a predictor with parameter w ∈ Rd on an
example (x, y) ∈ Rd × {−1, 1} is `bin(〈w, x〉, y). This loss can be equivalently viewed in the
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multiclass framework above setting K = 2, W = {W ∈ R2×d| ‖W1‖2 ≤ B,W2 = 0}, and
mapping the labels 1 7→ 1 and −1 7→ 2.

Finally, we make frequent use of a smoothing operator smoothµ : ∆K → ∆K for a parameter
µ ∈ [0, 1/2], defined via smoothµ(p) = (1− µ)p+ µ1/K where 1 ∈ RK is the all ones vector.
We use the notation 1[·] to denote the indicator random variable for an event.

Online Multiclass Logistic Regression. We use the following multiclass logistic regres-
sion protocol. Learning proceeds over a series of rounds indexed by t = 1, . . . , n. In each
round t, nature provides xt ∈ X , and the learner selects prediction ẑt ∈ RK in response.1
Then nature provides an outcome yt ∈ [K] or yt ∈ Y, depending on application, and the
learner incurs multiclass logistic loss `(ẑt, yt). The regret of the learner is defined to be∑n
t=1 `(ẑt, yt)− infW∈W

∑n
t=1 `(Wxt, yt).

The learner is said to be proper if it generates ẑt by choosing a weight matrix Wt ∈ W before
observing the pair (xt, yt) and setting ẑt = Wtxt. This is the standard protocol when the
problem is viewed as an instance of online convex optimization, and is the setting for previous
investigations into fast rates for logistic regression (Bach, 2010; McMahan and Streeter, 2012;
Bach and Moulines, 2013; Bach, 2014), including the negative result of Hazan et al. (2014).
The more general online learning setting that is described above allows improper learners
which may generate ẑt arbitrarily using knowledge of xt.

Fast Rates and Mixability. Conditions under which fast rates for online/statistical
learning (meaning that average regret or generalization error scales as Õ(1/n) rather than
O(1/

√
n)) are achievable have been studied extensively (see (Van Erven et al., 2015) and the

references therein). For the purpose of this chapter, a rather general condition on the structure
of the problem that leads to fast rates is Vovk’s notion of mixability (Vovk, 1995), which we
define in an abstract setting below. Consider a prediction problem where the set of outcomes
is Y and the set of predictions is Z, and the loss of a prediction on an outcome is given by a
function ` : Z × Y → R. For a parameter η > 0, the loss function ` is said to be η-mixable if
for any probability distribution π over Z, there exists a “mixed” prediction zπ ∈ Z such that
for all possible outcomes y ∈ Y , we have Ez∼π[exp(−η`(z, y))] ≤ exp(−η`(zmix, y)).

Now suppose that we are given a finite reference class of predictors F consisting of functions
f : X → Z, where X is the input space. The problem of online learning over F with an η-
mixable loss function admits an improper algorithm, viz. Vovk’s Aggregating Algorithm (Vovk,
1995), with regret bounded by log |F|

η
, a constant independent of the number of prediction

rounds n. The algorithm simply runs the standard exponential weights/Hedge algorithm
(Cesa-Bianchi and Lugosi, 2006) with learning rate set to η. In each round t, given an input xt,
the distribution over F generated by the exponential weights algorithm induces a distribution
over Z via the outputs of the predictors on xt, and the Aggregating Algorithm plays the
mixed prediction for this distribution over Z. Finally, if F is infinite, under appropriate

1We use the notation ẑt for predictions made in the logistic regression setting to keep ŷt reserved for
downstream applications of the logistic regression algorithm.
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conditions on F fast rates can be obtained by running a continuous version of the same
algorithm. This is the strategy we employ in this chapter for the logistic loss.

10.2 Improved Rates for Online Logistic Regression

We start by providing a simple proof of the mixability of the multiclass logisitic loss function
for the case when the outcomes y is a class in [K] (i.e. the unweighted case).
Proposition 15. The unweighted multiclass logistic loss ` : RK × [K] → R defined as
`(z, y) = − log(σ(z)y) is 1-mixable.

Proof. The proof is by construction. Given a distribution π on RK , define zπ =
σ+(Ez∼π[σ(z)]). Now, for any y ∈ [K], we have Ez∼π[exp(−`(z, y))] = Ez∼π[σ(z)y] =
σ(zπ)y = exp(−`(zπ, y)). The second equality above uses the fact that for any p ∈ ∆K ,
σ(σ+(p)) = p. Thus, ` is 1-mixable.

With a little more work, we can prove that the weighted multiclass logistic loss function is
also mixable with a constant that inversely depends on the total weight. The proof appears
in Section 10.7.
Proposition 16. Let Y :=

{
y ∈ RK

+ | ‖y‖1 ≤ L
}

for some parameter L > 0. The weighted
multiclass logistic loss ` : RK × Y → R defined as `(z, y) = −∑k∈[K] yk log(σ(z)k) is 1

L
-

mixable. For any distribution π on RK , the mixed prediction zπ = σ+(Ez∼π[σ(z)]) certifies
1
L

-mixability of `.

We are now ready to state a variant of Vovk’s Aggregating Algorithm, Algorithm 9 for the
online multiclass logistic regression problem from Section 10.1.1, operating over a class of
linear predictors parameterized by weight matrices W in some convex set W . The algorithm
and its regret bound (proved in Section 10.7) are given in fairly general form that is useful
for subsequent applications.

Algorithm 9
1: procedure (decision set W , smoothing parameter µ ∈ [0, 1/2].)
2: Initialize P1 to be the uniform distribution over W .
3: for t = 1, . . . , n do
4: Obtain xt and predict ẑt = σ+(smoothµ(EW∼Pt [σ(Wxt)])).
5: Obtain yt and define Pt+1 as the distribution over W with density

Pt+1(W ) ∝ exp(− 1
L

∑t
s=1`(Wxs, ys)).

6: end for
7: end procedure

Theorem 32. The regret of Algorithm 9 is bounded by
n∑
t=1

`(ẑt, yt)− inf
W∈W

n∑
t=1

`(Wxt, yt) ≤ 5LDW · log
(
BRn

DW
+ e

)
+ 2µ

n∑
t=1
‖yt‖1, (10.1)
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where DW := dim(W) ≤ dK is the linear-algebraic dimension of W. The predictions (ẑt)t≤n
generated by the algorithm satisfy ‖ẑt‖∞ ≤ log(K/µ).

Increasing the smoothing parameter µ only degrades the performance of Algorithm 9. However,
smoothing ensures that each prediction ẑt is bounded, which is important for our applications.

For the special case of multiclass prediction when y ∈ [K], this algorithm enjoys a regret
bound of O(dK log(BRn

dK
+ e)). It thus provides a positive resolution to the open problem of

McMahan and Streeter (2012) (in fact, with an exponentially better dependence on B than
what the open problem asked for), using improper predictions to circumvent the lower bound
of Hazan et al. (2014).

Turning to efficient implementation, it has been noted (e.g. (Hazan et al., 2007)) that log-
concave sampling or integration techniques (Lovász and Vempala, 2006, 2007) can be applied
to compute the expectation in Algorithm 9 in polynomial time. The following proposition
makes this idea rigorous2 and is proven formally in Section 10.7.6. We note that this is not
a practical algorithm, however, and obtaining a truly practical algorithm with a modest
polynomial dependence on the dimension is a significant open problem.
Proposition 17. Algorithm 9 can be implemented approximately so that the regret bound
(10.1) is obtained up to additive constants in time poly(d, n,B,R,K,L).

Finally, to conclude this section we state a lower bound, which shows that the log(B) factor
in the regret bound in Theorem 32 cannot be improved for most values of B. This lower
bound is by reduction to learning halfspaces with a margin in a Perceptron-type setting: We
first show that Algorithm 9 can be configured to give a mistake bound of O(d log(log(n)/γ))
for binary classification with halfspaces and margin γ,3 then give a lower bound against this
type of rate.

For simplicity, the lower bound is only stated in the binary outcome settting and we use
the standard definition of the binary logistic loss, `bin from Section 10.1.1. The proof is in
Section 10.7.
Theorem 33 (Lower bound). Consider the binary logistic regression problem over the class
of linear predictors with parameter set W = {w ∈ Rd| ‖w‖2 ≤ B} with B = Ω(

√
d log(n)).

Then for any algorithm for prediction with the binary logistic loss, there is a sequence of
examples (xt, yt) ∈ Rd×{−1, 1} for t ∈ [n] with ‖xt‖2 ≤ 1 such that the regret of the algorithm
is Ω

(
d log

(
B√

d log(n)

))
.

Relation to Bayesian model averaging To the best of our knowledge, the mixability
of the logistic loss has surprisingly not appeared in the literature. However, Algorithm 9
can be seen as an instance of Bayesian model averaging, and consequently the analysis of
Kakade and Ng (2005) can be applied to derive the same O(d log(Bn/d)) regret bound as in
Theorem 32 in the binary setting. Specifically, it suffices to apply their Theorem 2.2 with

2A subtlety is that since ẑt is evaluated inside the nonlinear logistic loss we cannot exploit linearity of
expectation.

3It is a folklore result that this type of margin bound can be obtained by running a variant of the ellipsoid
method online.
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parameter ν2 = B2/d. This highlights that Bayesian approaches can have great utility even
when analyzed outside of the Bayesian framework.

10.3 Agnostic Statistical Learning Guarantees

Before the results in this chapter were developed, the issue of improving on the O(eB) fast
rate for logistic regression was not addressed even in the i.i.d. statistical learning setting
(Section 2.3). This is perhaps not surprising since the proper lower bound proven by Hazan
et al. (2014) applies in this setting as well.

Using our improved online algorithm as a starting point, we will show that it is possible to
obtain a predictor with excess risk bounded in high-probability by O(d log(Bn)/n) for the
batch logistic regression problem. While it is quite straightforward to show that the standard
online-to-batch conversion technique applied to Algorithm 9 provides a predictor that obtains
such an excess risk bound in expectation, obtaining a high-probability bound is far less trivial,
as we must ensure that deviations scale at most as O(log(B)). Indeed, a different algorithm
is necessary, and our approach is to use a modified version of the “boosting the confidence”
scheme proposed by Mehta (2017) for exp-concave losses. Our main result for linear classes
is Theorem 34 below. For notational convenience will use the shorthand E(x,y)[·] to denote
E(x,y)∼D[·] where D is an unknown distribution over X × [K].
Theorem 34 (High-probability excess risk bound). Let D be an unknown distribution over
X × [K]. For any δ > 0 and n samples {(xt, yt)}nt=1 drawn from D, we can construct g : X →
RK such that w.p. at least 1− δ, the excess risk E(x,y)[`(g(x), y)]− infW∈W E(x,y)[`(Wx, y)] is
bounded by

O

dK log
(

BRn
log(1/δ)dK + e

)
log
(

1
δ

)
+ log(Kn) log

(
log(n)
δ

)
n

.
Theorem 34 is a consequence of the more general Theorem 39—stated and proved in
Section 10.7.2—concerning prediction with the log loss `log : ∆K × [K] → R defined as
`log(p, y) = − log(py). The theorem asserts that we can convert any online algorithm for
multiclass learning with log loss that predicts distributions in ∆K for any given input into a
predictor for the batch problem with an excess bound essentially equal to the average regret
with high probability.

10.4 Minimax Bounds for General Function Classes

We now turn to the question of extending our techniques to general, non-linear predictors.
We characterize the minimax regret for learning with the unweighted multiclass logistic loss4

for a general class F of predictors f : X → RK and abstract instance space X . This is
4We only consider the unweighted case in this section to avoid excessive notation.
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the same setting as in Section 10.1.1, but with the benchmark class {x 7→ Wx | W ∈ W}
replaced with an arbitrary class F , where the loss of a predictor f ∈ F on an example
(x, y) ∈ X × [K] is given by `(f(x), y) = − log(σ(f(x))y). The bounds we present in this
section—based on sequential covering numbers—are based on bounding a martingale process
arising via minimax analysis, as in Part II.

Specializing the setup of Section 2.3 to the logistic loss, the minimax regret is written as

Vol
n (F) = ⟪ sup

xt∈X
inf

ẑt∈RK
max
yt∈[K]

⟫
n

t=1

[
n∑
t=1

`(ẑt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)
]
. (10.2)

Our bounds on Vol
n (F) exploit that the logistic loss can be viewed in two complementary

ways: since the loss is 1-mixable, one can attain a bound of O(log |F|) for finite function
classes F using the Aggregating Algorithm, and since the loss is 2-Lipschitz (in the `∞ norm),
for more complex classes one can obtain bounds using sequential Rademacher complexity
(Rakhlin et al., 2014). Our analysis uses both properties simultaneously.

Here is a sketch of the idea for a special case in which we make the simplifying assumption
that F admits a pointwise cover. Recall that a pointwise cover for F at scale γ is a set V
of functions g : X → RK such that for any f ∈ F , there is a g ∈ V such that for all x ∈ X ,
‖f(x) − g(x)‖∞ ≤ γ. Let N(γ) be the size of a minimal such cover. For every g ∈ V , let
Fg = {f ∈ F | supx∈X‖f(x)− g(x)‖∞ ≤ γ}. Now consider the following two-level algorithm.
Within each Fg, run the minimax online learning algorithm for this set, then aggregate the
predictions for these algorithms over all g ∈ V using the Aggregating Algorithm to produce
the final prediction ẑt.

For each g ∈ V , the regret of the minimax optimal online learning algorithm competing
with Fg can be bounded by the sequential Rademacher complexity of Fg, which can in turn
be bounded by the Dudley integral complexity using that the loss is 2-Lipschitz and that
the L∞ “radius” of Fg is at most γ (Rakhlin et al., 2014). The Aggregating Algorithm, via
1-mixability, ensures a regret bound of logN(γ) against any sub-algorithm. This algorithm
has the following regret bound:

n∑
t=1

`(ẑt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt) ≤ inf
γ>0

{
logN(γ) + inf

α>0

{
8αn+ 24

√
n
∫ γ

α

√
logN(δ)dδ

}}
.

(10.3)

This procedure already yields the same bound for the d-dimensional linear setting explored
earlier: For a class x 7→ Wx with ‖W‖2 ≤ B it holds that N(γ) ≤

(
B
γ

)Kd
, and we can use

this bound in conjunction with (10.3) and the setting α = γ = 1/n to get the desired regret
bound of O(dK log(Bn/dK)) on the minimax regret.

Unfortunately, this simple approach fails on classes F for which the pointwise cover is infinite.
This can happen for well-behaved function classes that have small sequential covering number,
even though bounded sequential covering number is sufficient for learnability in the online
setting (Rakhlin et al., 2014). We now provide a bound that replaces the pointwise covering
number in the argument above with the sequential covering number. Since we work in
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the multiclass setting we require a slight generalization of the sequential covering number
definition from Chapter 6.
Definition 9. For any set Z, a Z-valued K-ary tree of depth n is a sequence z = (z1, . . . , zn)
of mappings with zt : [K]t−1 → Z.
Definition 10. A set V of RK-valued K-ary trees is an α-cover (w.r.t. the Lp norm) of F
on an X -valued K-ary tree x of depth n with loss ` if

∀f ∈ F , y ∈ [K]n, ∃v ∈ V s.t.
(

1
n

n∑
t=1

max
y′t∈[K]

|`(f(xt(y)), y′t)− `(vt(y), y′t)|
p

)1/p

≤ α.

Definition 11. The Lp covering number of F on tree x is defined as

Np(α, ` ◦ F ,x) := min{|V | : V is an α-cover of F on x w.r.t. the Lp norm}.

Further, define Np(α, ` ◦ F) = supxNp(α, ` ◦ F ,x).

If K = 2 then the above definition coincides with the previous sequential cover definition for
real valued function classes.
Theorem 35. Any function class F that is uniformly bounded5 over X enjoys the minimax
value bound:

Vol
n (F) ≤ inf

γ>0

{
logN2(γ, ` ◦ F) + inf

γ≥α>0

{
8αn+ 24

√
n
∫ γ

α

√
log(N2(δ, ` ◦ F) · n)dδ

}}
+ 4.
(10.4)

This rate overcomes several shortcomings faced when trying to apply previously developed
minimax bounds for general function classes to the logistic loss. Specifically, Rakhlin et al.
(2014) applies to our logistic loss setup but ignores the curvature of the loss and so cannot
obtain fast rates, while Rakhlin and Sridharan (2015) obtain fast rates but scale with eB,
where B is a bound on the magnitude of the predictions, because they use exp-concavity.

Our general function class bound is especially interesting in light of rates obtained in Rakhlin
and Sridharan (2014) for the square loss, which are also based on sequential covering numbers.
In the binary case the bound (10.4) precisely matches the general class bound of (Rakhlin
and Sridharan, 2014, Lemma 5) in terms of dependence on the sequential metric entropy.
However, (10.4) does not depend on B explicitly, whereas their Lemma 5 bound for the
square loss explicitly scales with B2. In other words, compared to other common curved
losses the logistic loss has a desirable property:

The minimax rate for logistic regression only depends on scale through capacity of the class F .

Let us examine some rates obtained from this bound for concrete settings. These examples
are based on sequential covering bounds that appeared in Rakhlin and Sridharan (2014,
2015).
Example 21 (Sparse linear predictors). Let G = {g1, . . . , gM} be a set of M functions
gi : X 7→ [−B,B]. Define F to be the set of all convex combinations of at most s out of these
M functions. The sequential covering number can be easily upper bounded: We can choose s

5Boundedness is used to apply the minimax theorem, but does not explicitly enter our quantitative bounds.
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out of M functions in
(
M
s

)
ways. For each choice, the sequential covering number for the set

of all convex combinations of these s bounded functions at scale β is bounded as Bs

βs
. Hence,

using that the logistic loss is Lipschitz, we conclude that N2(F , β) = O
((

eM
s

)s
· β−sBs

)
.

Using this bound with Theorem 35 we obtain Vn(F) ≤ O (s log(BMn/s)).

The bounds from Rakhlin et al. (2014); Rakhlin and Sridharan (2014, 2015) either pay
O(B
√
n) or O(eB) on this example, whereas the new bound from (10.4) correctly obtains

O(log(B)) scaling.
Example 22 (Besov classes). Let X be a compact subset of Rd. Let F be the ball of radius
B in Besov space Bs

p,q(X ). When s > d/p it can be shown that the pointwise log covering
number of the space at scale β is of order (B/β)d/s. When p ≥ 2 one can obtain a sequential
covering number bound of order (B/β)p (Rakhlin and Sridharan, 2015, Section 5.8). These
bounds imply:

1. If s ≥ d/2, then Vn(F) ≤ Õ
(
B

2d
d+2sn

d
d+2s

)
.

2. s < d/2, then: if p > 1 + d/2s then Vn(F) ≤ Õ
(
Bn1− s

d

)
; if not, Vn(F) ≤ Õ(Bn1−1/p).

Remark 2. Using the machinery from the previous section, we can generically lift the general
function class bounds given by Theorem 35 to high-probability bounds for the i.i.d. batch
setting.

10.5 Application: Bandit Multiclass Learning

We now apply the logistic regression machinery we have developed to the bandit multiclass
classification problem. This problem, first studied by Kakade et al. (2008), considers the
protocol of online multiclass learning in Section 10.1.1 with nature choosing yt ∈ [K] in each
round, but with the added twist of bandit feedback: in each round, the learner predicts a
class ŷt ∼ pt and receives feedback only on whether the prediction was correct or not, i.e.
1[ŷt 6= yt]. The goal is to minimize regret with respect to a reference class of linear predictors,
using some appropriate surrogate loss function for the 0-1 loss.

Kakade et al. (2009b) used the multiclass hinge loss `hinge(W, (xt, yt)) = maxk∈[K]\{yt}[1 +
〈Wk, xt〉 − 〈Wyt , xt〉]+ and gave an algorithm based on the multiclass Perceptron algorithm
achieving O(n2/3) regret. For a Lipschitz continuous surrogate loss function, running the
EXP4 algorithm (Auer et al., 2002b) on a suitable discretization of the space of all linear
predictors obtains Õ(

√
n) regret, albeit very inefficiently, i.e. with exponential dependence

on the dimension. In COLT 2009, Abernethy and Rakhlin (2009) posed the open problem
of obtaining an efficient algorithm for the problem with O(

√
n) regret. Specifically, they

suggested the multiclass logistic loss as an appropriate surrogate loss function for the problem.
Hazan and Kale (2011) solved the open problem and obtained an algorithm, Newtron, based
on the Online Newton Step algorithm (Hazan et al., 2007) with Õ(

√
n) regret for the case

when norm of the linear predictors scales at most logarithmically in n. Beygelzimer et al.
(2017) also solved the open problem presenting a different algorithm called SOBA. SOBA
is analyzed using a different family of surrogate loss functions parameterized by a scalar
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η ∈ [0, 1] with η = 0 corresponding to the hinge loss and η = 1 corresponding to the squared
hinge loss. For all values of η ∈ [0, 1], SOBA simultaneously obtains relative bound mistake
bounds of Õ( 1

η

√
n) with the comparator’s loss measured with respect to the corresponding

loss function.

Algorithm 10
1: procedure OBAMA(decision set W , smoothing parameter µ.)
2: Let A be Algorithm 9 initialized with W and µ.
3: for t = 1, . . . , n do
4: Obtain xt, pass it to A and let ẑt ∈ RK be the output of A.
5: Play ŷt ∼ pt := σ(ẑt) and obtain 1[ŷt 6= yt].
6: Define ỹt ∈ RK as ỹt(k) := 1[k=ŷt]1[ŷt=yt]

pt(ŷt)
for k ∈ [K] and pass it as feedback to A.

7: end for
8: end procedure

Now we present an algorithm, OBAMA (for Online Bandit Aggregation Multiclass Algorithm),
depicted in Algorithm 10 in Section 10.7.4, that obtains an Õ(

√
n) relative mistake bound for

the multiclass logistic loss, thus providing another solution to the open problem of Abernethy
and Rakhlin (2009). The mistake bound of OBAMA trumps that of Newtron, since both
algorithms rely on the same loss function, and OBAMA obtains an Õ(

√
n) relative mistake

bound on a larger range of parameter values compared to Newtron. While SOBA also has an
Õ(
√
n) relative mistake bound, the two bounds are incomparable since they are relative to

the comparator’s loss measured using different loss functions.
Theorem 36. There is a setting of the smoothing parameter µ such that OBAMA enjoys
the following mistake bound:

n∑
t=1

1[ŷt 6= yt]

≤ inf
W∈W

n∑
t=1

`(Wxt, yt) +O
(

min
{
dK2e2BR log

(
BRn
dK

+ e
)
,
√
dK2 log(BRn

dK
+ e)n

})
.

This bound significantly improves upon that of Newtron (Hazan and Kale, 2011), which is of
order O(dK3 min{exp(BR) log(n), BRn 2

3}) under the same setting and surrogate loss. The
proof of Theorem 36 appears in Section 10.7.4.

10.6 Application: Online Multiclass Boosting

The final application of our online logistic regression results is to derive adaptive online
boosting algorithms with optimal sample complexity, which improves the AdaBoost.OL
algorithm of Beygelzimer et al. (2015) for the binary classification setting as well as its
multiclass extension AdaBoost.OLM of Jung et al. (2017). We state our improved online
boosting algorithm in the multiclass setting for maximum generality, following the exposition
and notation of Jung et al. (2017) fairly closely.
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We consider the following online multiclass prediction setting with 0-1 loss. In each round t,
for t = 1, . . . , n, the learner receives an instance xt ∈ X , then selects a class ŷt ∈ [K] , and
finally observes the true class yt ∈ [K]. The goal is to minimize the total number of mistakes∑n
t=1 1{ŷt 6= yt}.

In the boosting setup, we are interested in obtaining strong mistake bounds with the help
of weak learners. Specifically, the learner is given access to N copies of a weak learning
algorithm for a cost-sensitive classification task. Each weak learner i ∈ [N ] works in the
following protocol: for time t = 1, . . . , n, 1) receive xt ∈ X and cost matrix Ci

t ∈ C;
2) predict class lit ∈ [K]; 3) receive true class yt ∈ [K] and suffer loss Ci

t(yt, lit). Here
C is some fixed cost matrices class and we follow (Jung et al., 2017) to restrict to C ={
C ∈ RK×K

+ | ∀y ∈ [K], C(y, y) = 0 and ‖C(y, ·)‖1 ≤ 1
}

.

To state the weak learning condition, we define a randomized baseline uγ,y ∈ ∆K for some
edge parameter γ ∈ [0, 1] and some class y ∈ [K], so that uγ,y(k) = (1 − γ)/K for k 6= y
and uγ,y(k) = (1− γ)/K + γ for k = y. In other words, uγ,y puts equal weight to all classes
except for the class y which gets γ more weight. The assumption we impose on the weak
learners is then that their performance is comparable to that of a baseline which always picks
the true class with slightly higher probability than the others, formally stated below.
Definition 12 (Weak Learning Condition (Jung et al., 2017)). An environment and a
learner outputting (lt)t≤n satisfy the multiclass weak learning condition with edge γ and
sample complexity S if for all outcomes (yt)t≤n and cost matrices (Ct)t≤n from the set C
adaptively chosen by the environment, we have ∑n

t=1Ct(yt, lt) ≤
∑n
t=1 Ek∼uγ,yt [Ct(yt, k)] + S.6

10.6.1 AdaBoost.OLM++

The high-level idea of our algorithm is similar to that of AdaBoost.OL and AdaBoost.OLM:
find a weighted combination of weak learners to minimize some version of the logistic loss in
an online manner. The key difference is that previous works use simple gradient descent to
find the weight for each weak learner via proper learning, while we translate the problem
into the framework discussed in Section 10.2 and deploy the proposed improper learning
techniques to obtain an improvement on the regret for learning these weights, which then
leads to better and in fact optimal sample complexity.

Another difference compared to (Jung et al., 2017) is that the logistic loss we use here is
more suitable for the multiclass problem than the one they use.7 This simple modification
leads to exponential improvement in the number of classes K for the number of weak learners
required.

We now describe our algorithm, called AdaBoost.OLM++, in more detail (see Algorithm 11
in Section 10.7.5). We denote the i-th weak learner as WLi, which is seen as a stateful object
and supports two operations: WLi.Predict(x,C) predicts a class given an instance and a

6This is in fact a weaker weak learning condition than that of (Jung et al., 2017), which also allows weights.
7The loss Jung et al. (2017) use moves the sum over the incorrect classes outside the log, that is,

`(z, y) =
∑
k 6=y log(1 + ezk−zy ).
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cost matrix but does not update its internal state; WLi.Update(x,C, y) updates the state
given an instance, a cost matrix and the true class y. To keep track of the state we use the
notation WLit to imply that it has been updated for t− 1 times.

For each weak learner, the algorithm also maintains an instance of Algorithm 9, denoted
by Logistici, to improperly learn the aforementioned weight for this weak learner. Simi-
larly, we use Logistici.Predict(x) to denote the prediction step (step 4) in Algorithm 9 and
Logistici.Update(x, y) to denote the update step (i.e. step 5). The notation Logisticit again
implies that the state has been updated t− 1 times.

Algorithm 11 AdaBoost.OLM++
1: procedure AdaBoost.OLM++(weak learners WL1, . . . ,WLN)
2: For all i ∈ [N ], set vi1 ← 1, initialize weak learner WLi1, and initialize logistic learner

Logistici1 with W =
{

(αIK×K , IK×K) ∈ RK×2K | α ∈ [−2, 2]
}

and µ = 1/n.
3: for t = 1, . . . , n do
4: Receive instance xt.
5: s0

t ← 0 ∈ RK .
6: for i = 1, . . . , N do
7: Compute cost matrix Ci

t from si−1
t using (10.5).

8: lit ←WLit.Predict(xt, Ci
t).

9: x̃it ← (elit , s
i−1
t ) ∈ R2K .

10: sit ← Logisticit.Predict(x̃it).
11: ŷit ← arg maxk sit(k).
12: end for
13: Sample it with P(it = i) ∝ vit.
14: Predict ŷt = ŷitt and receive true class yt ∈ [K].
15: for i = 1, . . . , N do
16: WLit+1 ←WLit.Update(xt, Ci

t , yt).
17: Logisticit+1 ← Logisticit.Update(x̃it,1yt).
18: vit+1 ← vit · exp(−1{ŷit 6= yt}).
19: end for
20: end for
21: end procedure

Our algorithm maintains a variable sit ∈ RK which stands for the weighted accumulated
scores of the first i weak learners for instance xt. When updating sit from si−1

t given the
prediction lit ∈ [K] of weak learner i, our goal is to have the total loss ∑n

t=1 `(sit, yt) close
to ∑n

t=1 `(si−1
t + αelit , yt) for the best α within some range ([−2, 2] suffices). Previous works

therefore try to learn this weight α via standard online learning approaches. However, realizing
si−1
t +αelit can be written as Wx̃it for W = (αIK×K , IK×K) ∈ RK×2K and x̃it = (elit , s

i−1
t ) ∈ R2K ,

in light of Theorem 32 we can in fact apply Algorithm 9 to learn sit if we let the decision set
be W =

{
(αIK×K , IK×K) ∈ RK×2K | α ∈ [−2, 2]

}
. To make sure that x̃it has bounded norm,

we also set the smoothing parameter µ to be 1/n.

With the weighted score sit, the prediction coming from the first i weak learner is naturally
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define as ŷit = arg maxk sit(k), the class with the largest score. As in AdaBoost.OL and
AdaBoost.OLM, these predictions (ŷit)i≤N are treated as N experts and the final prediction yt
is determined by the classic Hedge algorithm (Freund and Schapire, 1997) over these experts
(Lines 13 and 18).

Finally, the cost matrices fed to the weak learners are closely related to the gradient of the
loss function. Formally, define the auxiliary cost matrix Ĉi

t such that Ĉi
t(y, k) = ∂`(z,y)

∂zk
|z=si−1

t
,

which is simply σ(si−1
t )k for k 6= y and σ(si−1

t )y − 1 otherwise. The actual cost matrix is
then a translated and scaled version of Ĉi

t(y, k) so that it belongs to the class C:

Ci
t(y, k) = 1

K

(
Ĉi
t(y, k)− Ĉi

t(y, y)
)
∈ C. (10.5)

We now give a mistake bound for AdaBoost.OLM++, which holds even without the weak
learning condition and is adaptive to the empirical edge of the weak learners.8 All proofs in
this section appear in Section 10.7.5.
Theorem 37. With probability at least 1−δ, the predictions (ŷt)t≤n generated by Algorithm 11
satisfy

n∑
t=1

1{ŷt 6= yt} = Õ

(
n∑N
i=1 γ

2
i

+ N∑N
i=1 γ

2
i

)
, (10.6)

where γi =
∑n

t=1 Ĉ
i
t(yt,lit)∑n

t=1 Ĉ
i
t(yt,yt)

∈ [−1, 1] is the empirical edge of weak learner i.

We can now relate the empirical edges to the edge defined in the weak learning condition.
Proposition 18. Suppose all weak learners satisfy the weak learning condition with edge γ
and sample complexity S (Definition 12). Then with probability at least 1−δ, the predictions
(ŷt)t≤n generated by Algorithm 11 satisfy

n∑
t=1

1{ŷt 6= yt} = Õ

(
n

Nγ2 + 1
γ2 + KS

γ

)
. (10.7)

Thus, to achieve a target error rate ε, it suffices to take N = Ω̃
(

1
εγ2

)
and n = Ω̃( 1

εγ2 + KS
εγ

).

Comparison with prior algorithms Compared to (Jung et al., 2017), our sample com-
plexity on n improves the dependence on K (for OnlineMBBM) and also ε and γ (for
AdaBoost.OLM), and is in fact optimal according to their lower bound (Theorem 4). Our
bound on the number of weak learners, on the other hand, is weaker compared to the
non-adaptive algorithm OnlineMBBM (which has a logarithmic dependence on 1/ε), but
is still much stronger than that of AdaBoost.OLM since it improves the dependence on K
from linear to log(K). Although not stated explicitly, our results also apply to the binary
setting considered in (Beygelzimer et al., 2015) and improve the sample complexity of their
AdaBoost.OL algorithm to the optimal bound Ω̃( 1

εγ2 + S
εγ

). Overall, our results significantly
reduce the gap between optimal and adaptive online boosting algorithms.

As a final remark, the same technique used here also readily applies to the online boosting
setting for the multi-label ranking problem recently studied by Jung and Tewari (2018).

8In this chapter we use the notation Õ and Ω̃ to hide dependence logarithmic in n,N,K and 1/δ.
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10.7 Detailed Proofs

10.7.1 Proofs from Section 10.2

Lemma 19. The generalized multiclass logisitic loss is 2L-Lipschitz with respect to `∞ norm.

Proof. It is straightforward to verify the identity

∇z`(z, y) =
(∑

k

yk

)
σ(z)− y.

It follows that ‖∇z`(z, y)‖1 ≤ ‖y‖1‖σ(z)‖1 + ‖y‖1 ≤ 2L. By duality, this implies 2L-
Lipschitzness with respect to `∞.
Lemma 20. The function f(x) = ∏

k∈[d] x
αk
k is concave over Rd

+ whenever αk ≥ 0 ∀k and∑
k∈[d] αk ≤ 1.

Proof. We will prove that the Hessian of f is negative semidefinite. The Hessian can be
written as

∇2f(x) = f(x) ·G(x),

where the matrix G(x) ∈ Rd×d is given by G(x)ii = αi(αi − 1)x−2
i and G(x)ij = αiαjx

−1
i x−1

j .
Since f is nonnegative, it suffices to show that G is negative semidefinite. Using the
reparameterization yi = x−1

i and the notation � for the element-wise product, we can write

G(y) = (α� y)⊗2 − diag(α� y2).

For any fixed y ∈ Rd
+ and any v ∈ Rd, we have

〈v,G(y)v〉 =
(

d∑
k=1

αkykvk

)2

−
d∑

k=1
αky

2
kv

2
k

≤
(

d∑
k=1

αky
2
kv

2
k

)(
d∑

k=1
αk

)
−

d∑
k=1

αky
2
kv

2
k

≤ 0.

The first inequality above uses Cauchy-Schwarz and the second uses that ∑αk ≤ 1.

Proof of Proposition 16. We first show that the generalized multiclass log loss `log(p, y) :=
−∑k∈[K] yk log(pk) is 1/L-mixable over predictions p ∈ ∆K and outcomes y ∈ Y . Recall that
to show η-mixability it is sufficient to demonstrate that ` is η-exp-concave with respect to p
(e.g. (Cesa-Bianchi and Lugosi, 2006)) for any y ∈ Y .

Observe that we have
e−η`(p,y) =

∏
k∈[K]

pηykk .
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When η ≤ 1/L, we have ∑k∈[K] ηyk ≤ 1. Since p ∈ ∆K and by the definition of Y , Lemma 20
implies the function p 7→ ∏

k∈[K] p
ηyk
k is concave, which proves the result.

Exp-concavity implies that for any distribution π̃ over ∆K , the predicition pπ̃ = Ep∼π̃[p]
certifies the inequality

E
p∼π̃

[exp(−η`log(p, y))] ≤ exp(−η`log(pπ̃, y)) y ∈ Y .

Now, turning to the multiclass logistic loss ` : RK × Y → R defined as `(z, y) =
−∑k∈[K] yk log(σ(z)k), let π be any distribution on RK . Let π̃ be the induced distribu-
tion on ∆K via the softmax function, i.e. a sample from π̃ is generated by sampling z ∼ π
and computing p = σ(z). Then define zπ = σ+(Ez∼π[σ(z)]). Since σ(zπ) = Ez∼π[σ(z)] = pπ̃
and `(z, y) = `log(σ(z), y), the above inequality implies that

E
z∼π

[exp(−η`(z, y))] ≤ exp(−η`(zπ, y)) y ∈ Y .

Lemma 21. Suppose a strategy (z̃t)t≤n guarantees a regret inequality
n∑
t=1

`(z̃t, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt) ≤ R.

Then for 0 ≤ µ ≤ 1/2 the strategy ẑt := σ+(smoothµ(σ(z̃t))) guarantees
n∑
t=1

`(ẑt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt) ≤ R + 2µ
n∑
t=1
‖yt‖1,

and satisfies ‖ẑt‖∞ ≤ log(K/µ).

Proof of Lemma 21. We write regret as
n∑
t=1

`(ẑt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)

=
n∑
t=1

`(z̃t, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt) +
n∑
t=1

`(ẑt, yt)−
n∑
t=1

`(z̃t, yt)

≤ R +
n∑
t=1

`(ẑt, yt)−
n∑
t=1

`(z̃t, yt).

For the last two terms, fix any round t and define p̃ = σ(z̃t). Since σ(ẑt) = (1− µ)p̃+ µ1/K,
we have

`(ẑt, yt)− `(z̃t, yt) =
∑
k∈[K]

yt,k log
(

p̃k
(1− µ)p̃k + µ/K

)
≤ log

(
1

1− µ

) ∑
k∈[K]

yt,k ≤ 2µ‖yt‖1.

The last inequality uses that log(1/(1− x)) ≤ 2x for x ≤ 1/2. Summing up over all rounds t
gives us the desired regret bound.

To establish boundedness of the predictions, recall that σ+
k (p) = log(pk). Letting p = (1−

µ)EW∼Pt [σ(Wxt)] + µ1/K, it clearly holds that pk ≥ µ/K, and so |σ+
k (p)| ≤ log(K/µ).
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Proof of Theorem 32. Let η = 1/L. Let z̃t = σ+(EW∼Pt [σ(Wxt)]) — that is, the predic-
tion for the setting µ = 0. We will first establish a regret bound for the case µ = 0, then
reduce the general case to it by approximation.

First observe that due to mixability for η ≤ 1/L (from Proposition 16), we have
n∑
t=1

`(z̃t, yt) ≤ −
1
η

n∑
t=1

log
(∫
W

exp(−η`(Wxt, yt))dPt(W )
)
.

Let Zt =
∫
W exp(−η∑t

s=1 `(Wxs, ys))dW with the convention Z0 =
∫
W dW . Using the

definition of Pt, the right-hand-side in the displayed equation above is then equal to

−1
η

n∑
t=1

log(Zt/Zt−1) = −1
η

log(Zn/Z0)

= −1
η

log
(∫
W

exp
(
−η

n∑
t=1

`(Wxt, yt)
)
dW

)
+ 1
η

log(Vol(W))

We will upper bound the term − log(
∫
W exp(−η∑n

t=1 `(Wxt, yt))dW ). Let W ? =
arg minW∈W

∑n
t=1 `(Wxt, yt). Fix θ ∈ [0, 1) and let S = {θW ? + (1− θ)W | W ∈ W} ⊆ W.

To upper bound the negative-log-integral term, we will lower bound the integral appearing
inside.∫

W
exp

(
−η

n∑
t=1

`(Wxt, yt)
)
dW ≥

∫
S

exp
(
−η

n∑
t=1

`(Wxt, yt)
)
dW.

Using a change of variables and noting that since W ∈ RK×d the Jacobian of the mapping
W 7→ (1− θ)W + θW ? has determinant (1− θ)DW , the right-hand-side above equals

= (1− θ)DW
∫
W

exp
(
−η

n∑
t=1

`((θW ? + (1− θ)W )xt, yt)
)
dW.

Observe that ‖(θW ? + (1− θ)W )xt −W ?xt‖∞ = (1 − θ) maxk∈[K]|〈W ?
k −Wk, xt〉| ≤ 2(1 −

θ)B‖xt‖?. Using this observation with the 2L-Lipschitzness of ` with respect to `∞ from
Lemma 19 implies that the above displayed expression is at most

(1− θ)DW
∫
W

exp
(
−η

n∑
t=1

`(W ?xt, yt)− 4(1− θ)BLη
n∑
t=1
‖xt‖?

)
dW.

= (1− θ)DW · Vol(W) · exp
(
−η

n∑
t=1

`(W ?xt, yt)
)
· exp

(
−4(1− θ)BLη

n∑
t=1
‖xt‖?

)
.

179



Combining all of the observations so far, we have proven the following regret bound:
n∑
t=1

`(ŷt, yt)−
n∑
t=1

`(W ?xt, yt)

≤ 1
η

log(Vol(W))−
n∑
t=1

`(W ?xt, yt)

+ 1
η

(
DW log

( 1
1− θ

)
− log(Vol(W)) + η

n∑
t=1

`(W ?xt, yt) + 4(1− θ)BLη
n∑
t=1
‖xt‖?

)
︸ ︷︷ ︸

Bound on negative log-integral-exp.

= DW
η

log
( 1

1− θ

)
+ 4(1− θ)BL

n∑
t=1
‖xt‖?.

To conclude, we choose θ to satisfy 1− θ = min{DW/(B
∑n
t=1‖xt‖?), 1}. Note that regardless

of which argument obtains the minimum, we have 4(1 − θ)BL∑n
t=1‖xt‖? ≤ 4DWL. The

choice of θ also means that log
(

1
1−θ

)
= log(1 ∨B∑n

t=1‖xt‖?/DW). This leads to a final bound
of

DWL · log
(

1 ∨ B
∑n
t=1‖xt‖?
DW

)
+ 4DWL.

To simplify we upper bound this by

5DWL · log
(
B
∑n
t=1‖xt‖?
DW

+ e

)
= 5DWL · log

(
BRn

DW
+ e

)
.

To handle the general case where µ > 0 we simply appeal to Lemma 21 and use that
σ(σ+(p)) = p ∀p ∈ ∆K .

We now state the proof of Theorem 33. This proof is a simple corollary of Theorem 38, a
lower bound on mistakes for online binary classification with a margin. Theorem 38 is proven
in the remainder of this section of the appendix. To begin, we need the following definition:
Definition 13. Let F : X → [−1, 1] be some function class. A dataset (x1, y1), . . . , (xn, yn) ∈
∪nt=1X × {±1} is shattered with γ margin if there exists f ∈ F such that

f(xt)yt ≥ γ.

Proof of Theorem 33. Let ẑt for t ∈ [n] be the sequence of predictions made by the
algorithm for a sequence of examples (xt, yt), for t ∈ [n]. It is easy to check that

n∑
t=1

`bin(ẑt, yt) ≥ log(2)
n∑
t=1

1{sgn(ẑt) 6= yt}.

Let 1/γ = B/ log(n). From Theorem 38, it holds that whenever γ ≤ O(1/
√
d), there exists

an adversarial sequence (xt, yt), for t ∈ [n], for which
n∑
t=1

1{sgn(ŷt) 6= yt} ≥
d

4

⌊
log2

(
1

5γd1/2

)⌋
,
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and for which the dataset is γ-shattered by some w ∈ Rd with ‖w‖2 ≤ 1. Since the dataset is
γ-shattered we also have

inf
w:‖w‖2≤B

n∑
t=1

`bin(〈w, xt〉, yt) ≤
n∑
t=1

log(1 + e−γB) =
n∑
t=1

log
(

1 + 1
n

)
≤ 1.

This yields the desired lower bound on the regret.
Theorem 38. Fix a margin γ ∈ (0, 1

4
√

5d ]. Then for any randomized strategy (ŷt)t≤n there
exists an adversary (xt)t≤n, (yt)t≤n with ‖xt‖2 ≤ 2 for which

E
[
n∑
t=1

1{sgn(ŷt) 6= yt}
]
≥ d

4

⌊
log2

(
1

5γd1/2

)⌋
, (10.8)

and the data sequence is realizable by a unit vector w ∈ Rd+1 with margin γ.
Remark 3. This lower bound only applies in the regime where 1

γ2 ≥ d, meaning that it does
not contradict the dimension-independent Perceptron bound.

To prove Theorem 38, we first state a standard lower bound based on Littlestone’s dimension.
Definition 14. An X -valued tree is a sequence of mappings xt : {±1}t−1 → X for 1 ≤ t ≤ n.

We use the abbreviation of xt(ε) = xt(ε1, . . . , εt−1) for such a tree, where ε ∈ {±1}n.
Lemma 22. Let F : X → [−1, 1] be some function class. Suppose there exists a X -valued
tree x of depth Dγ such that

∀ε ∈ {±1}Dγ ∃f ∈ F s.t. f(xt(ε))εt ≥ γ. (10.9)

Then
inf

q1,...,qn
sup

(x1,y1),...,(xn,yn)
separable with γ margin

E
ŷ1∼qt,...,ŷn∼qn

[
n∑
t=1

1{ŷt 6= yt}
]
≥ 1

2 min{Dγ, n},

where the infimum and supremum above are understood to range over policies.

Proof of Lemma 22. Suppose that n ≤ Dγ . We will sample Rademacher random variables
ε ∈ {±1}n and play yt = εt and xt = xt(ε1:t−1). This immediately implies that the expected
number of mistakes is equal to n

2 . Moreover, since n ≤ Dγ , the assumption in the statement
of the lemma implies that there exists f ∈ F such that f(xt(ε))yt ≥ γ, so the data is indeed
separable with γ margin.

If n > Dγ we can follow the strategy above, then continue to play (xDγ , yDγ ) for all t > Dγ .

Proof of Theorem 38. By Lemma 22 it suffices to exhibit a tree x for which (10.9) is
satisfied with Dγ = Ω(d log(1/(

√
dγ))).

We first restate a well-known tree instance for the one-dimensional case. Consider a class of
thresholds Fthresh = {fθ : [0, 1]→ {±1}} defined by fθ(z) = 1− 21{x < θ}. The claim is as
follows: For any δ ∈ (0, 1], there exists a [0, 1]-valued tree z of depth Dδ := blog2(2/δ)c such
that
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1. ∀ε ∈ {±1}Dδ ∃θ s.t. fθ(zt(ε))εt = 1.

2. |zt(ε)− zs(ε)| ≥ δ ∀s 6= t.

The construction is as follows. Let u1 = 1, l1 = 0. Recursively for t = 1, . . . , n:

• zt(ε1:t−1) = lt+ut
2 .

• If εt = −1 set lt+1 = zt(ε1:t−1) and ut+1 = ut, else set ut+1 = zt(ε1:t−1) and lt+1 = lt.

Under this construction the sequence z1(·), . . . ,zDδ(ε1:Dδ−1) can always be shattered. Fur-
thermore z?(ε) := zDδ+1(ε1:Dδ) satisfies the additional property that zt > z?(ε) =⇒ εt = 1
and zt < z?(ε) =⇒ εt = −1. Also, |z? − zt| ≥ δ

2 ∀t ≤ Dδ.

We now show how to extend this instance to d+ 1 dimensions for any d ≥ 1. The approach
is to concatenate d instances of the z tree constructed above, one for each of the first d
coordinates. The final coordinate is left as a constant so that a bias can be implemented.

Let n = d ·Dδ be the tree depth for our d+ 1-dimensional instance. For any time t, let k ∈ [d]
and τ ∈ [Dδ] be such that t = (k − 1)Dδ + τ . Let any sequence ε ∈ {±1}n be partitioned
as (ε1, . . . , εd) with each εk ∈ {±1}Dδ . Letting ek denote the kth standard basis vector, we
define a shattered tree x as follows:

xt(ε1:t−1) = ed+1 + ekzτ (εk1:τ−1).

We construct a vector w ∈ Rd+1 whose sign correctly classifies each xt as follows:

• wd+1 = −δ.

• wk = δ/z?(εk).

For any t = (k − 1)Dδ + τ this choice gives

〈w,xt(ε)〉εt = δ(zτ (εk1:τ−1)/z?(εk)− 1)εt.

As described above, zt > z?(ε) =⇒ εt = 1 and zt < z?(ε) =⇒ εt = −1, which immediately
implies that the inner product is always non-negative, and so the dataset is shattered. Using
that |z?(ε)− zt(ε)| ≥ δ

2 and that both numbers lie in [0, 1], we can lower bound the magnitude
with which the shattering takes place:

∣∣∣zτ (εk1:τ−1)/z?(εk)− 1
∣∣∣ = 1

z?(εk)
∣∣∣zτ (εk1:τ−1)− z?(εk)

∣∣∣ ≥ 1
z?(εk)

δ

2 ≥
δ

4 ,

and so the shattering takes place with margin at least δ2/4.

Lastly, the norm of w is given by

‖w‖2 =

√√√√δ2 +
d∑

k=1

(
δ

z?(εk)

)2

≤
√
δ2 + 4d ≤

√
5d,

where the first inequality uses that z?(ε) ≥ δ/2 and the second uses that d ≥ 1
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Rescaling, we have that the vector w/‖w‖2 shatters the tree with margin at least δ2

4
√

5d . To
rephrase the result as a function of a desired margin: For any margin γ ∈ (0, 1

4
√

5d ], setting

δ =
√
γ4
√

5d ≤ 1, we have constructed a tree of depth
⌊
log2(2/

√
γ4
√

5d)
⌋

that can be
shattered with margin γ.

10.7.2 Proof from Section 10.3

Theorem 39. Let F be a class of functions f : X → ∆K. Suppose there is an online
multiclass learning algorithm over F using the log loss that for any data sequence (xt, yt) ∈
X × [K] for t = 1, 2, . . . , n produces distributions pt ∈ ∆K such that the following regret bound
holds:

n∑
t=1

`log(pt, yt)− inf
f∈F

n∑
t=1

`log(f(xt), yt) ≤ R(n).

Here R(n) is some function of n and other relevant problem dependent parameters. Then for
any given δ > 0 and any (unknown) distribution D over X × [K], it is possible to construct a
predictor g : X → ∆K using n samples {(xt, yt)}nt=1 drawn from D such that with probability
at least 1− δ, the excess risk of g is bounded as

E
(x,y)

[`log(g(x), y)] ≤ inf
f∈F

E
(x,y)

[`log(f(x), y)] +O

 log
(

1
δ

)
R
(

n
log(1/δ)

)
+ log(Kn) log

(
log(n)
δ

)
n

.
Proof of Theorem 39. Recall that the standard online-to-batch conversion (Helmbold and
Warmuth, 1995) produces an (improper) predictor using n data samples by running the
online algorithm on those samples and stopping at a random time. Then predictor is online
algorithm with its the internal state frozen. This predictor has excess risk bounded by the
average regret over n rounds, in expectation over the n data samples.

The algorithm to generate the predictor g with the specified excess risk bound in the theorem
statement is given below:

1. Let M = dlog(2/δ)e. Produce M predictors h1, . . . , hM : X → ∆K by using the online-
to-batch conversion on the online multiclass learning algorithm run using M disjoint
sets of n/2M samples each. Call the ith such set of samples Si

2. For i ∈ [M ], define h̃i : X → ∆K as h̃i(x) = smoothµ(hi(x)) for µ = R(n/M)
2n/M .

3. Construct an online convex optimization instance as follows. The learner’s decision
set is ∆M , the set of all distributions on [M ]. For every data point (x, y) ∈ X × [K],
associate the loss function `(x,y) : ∆M → R defined as `(x,y)(q) = − log(Ei∼q[(h̃i(x))y]).
These loss functions are 1-exp-concave, so run the EWOO algorithm (Hazan et al.,
2007) using the remaining n/2 examples sequentially to generate loss functions. Let q̄
be the average of all the distributions in ∆M generated by EWOO. Define g := Ei∼q̄[h̃i].
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We now proceed to analyse the excess risk of g. First, using the regret bound for the online
multiclass learning algorithm, and in-expecation bound on the excess risk for online-to-batch
conversion, for every i ∈ [M ], we have

E
Si

[
E

(x,y)
[`log(hi(x), y)]

]
≤ inf

f∈F
E

(x,y)
[`log(f(x), y)] + R(n/M)

n/M
.

For any p ∈ ∆K , if p̃ = smoothµ(p), then for any y ∈ [K] we have − log(p̃y) + log(py) =
log( py

(1−µ)py+µ/K ) ≤ 2µ. So for every i ∈ [M ], we have

E
Si

[
E

(x,y)
[`log(h̃i(x), y)]

]
≤ E

Si

[
E

(x,y)
[`log(hi(x), y)]

]
+ 2µ.

Putting the above two bounds together, using the specified value of µ and an application of
Markov’s inequality, with probability at least 1− e−M = 1− δ

2 , there exists some i? ∈ [M ]
such that

E
(x,y)

[`log(h̃i?(x), y)] ≤ inf
f∈F

E
(x,y)

[`log(f(x), y)] + 2eR(n/M)
n/M

. (10.10)

The EWOO algorithm in step 3 of the procedure enjoys a regret bound of O(M log(n))
(the online convex optimization problem is an instance of online portfolio selection over M
instruments, see (Hazan et al., 2007)). Furthermore, the application of smoothµ makes the
range for the log loss be bounded by log(K/µ). Thus, by Corollary 2 of Mehta (2017), with
probability at least 1− δ

2 ,

E
(x,y)

[`log(g(x), y)] = E
(x,y)

[− log( E
i∼q̄

[(h̃i(x))y])]

≤ E
(x,y)

[− log((h̃i?(x))y)] +O

(
M log(n) + log(K/µ) log(log(n)/δ)

n

)
(10.11)

Note that `log(h̃i?(x), y) = − log((h̃i?(x))y). Applying the union bound and combining
inequalities (10.10) and (10.11) with some simplification of the bounds using the value of M ,
with probability at least 1− δ we have

E
(x,y)

[`log(g(x), y)] ≤ inf
f∈F

E
(x,y)

[`log(f(x), y)] +O

 log
(

1
δ

)
R
(

n
log(1/δ)

)
+ log(Kn) log

(
log(n)
δ

)
n

.

10.7.3 Proofs from Section 10.7.3

For this section we let ` denote the unweighted multiclass logistic loss: the multiclass logistic
loss defined in Section 10.1.1 for the special case where Y = {ei}i∈[K]. Before proving
Theorem 35 we need a few preliminaries. First, we state a version of the Aggregating
Algorithm with the logistic loss for finite classes.
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Lemma 23. Let F be any finite class of sequences of the form f = (ft)t≤n with ft ∈ RK ,
where each ft is available at time t and may depend on y1:t−1. Define a strategy

1. Pt(f) ∝ exp
(
−∑t−1

s=1 `(fs, ys)
)

(so P1 = Uniform(F)).

2. ẑt = σ+(smooth 1
n
(Ef∼Pt [σ(ft)])).

This strategy enjoys a regret bound of
n∑
t=1

`(ẑt, yt)−min
f∈F

n∑
t=1

`(ft, yt) ≤ log|F|+ 2. (10.12)

Furthermore, the predictions satisfy ‖ẑt‖∞ ≤ log(Kn).

Proof of Lemma 23. First consider the closely related strategy z̃t := σ+(Ef∼Pt [σ(f(xt))]).
In light of the 1-mixability for the logistic loss proven in Proposition 15, z̃t is precisely the
finite class version of the Aggregating Algorithm, which guarantees (Cesa-Bianchi and Lugosi,
2006):

n∑
t=1

`(z̃t, yt)−min
f∈F

n∑
t=1

`(ft, yt) ≤ log|F|.

To establish the final result we simply appeal to Lemma 21, using that σ(σ+(p)) = p ∀p ∈
∆K .

We require need a slight generalization of the notion of covering number defined in Definition 17
for intermediate results.
Definition 15. Let U be a collection of RK-valued K-ary trees. A set V of RK-valued K-ary
trees is an α-cover with respect to the Lp norm for U if

∀u ∈ U, y ∈ [K]n, ∃v ∈ V s.t.
(

1
n

n∑
t=1

max
y′t∈[K]

|`(ut(y), y′t)− `(vt(y), y′t)|
p

)1/p

≤ α.

Definition 16. The Lp covering number for a collection of trees U with loss ` is

Np(α, ` ◦ U) := min{|V | : V is an α-cover of U w.r.t. the Lp norm}.

Proof of Theorem 35. Define a subset of the output space:

Z :=
{
z ∈ RK | ‖z‖∞ ≤ log(Kn)

}
.

We move to an upper bound on the minimax value by restricting predictions to Z:

Vol
n (F) = ⟪ sup

xt∈X
inf

ẑt∈RK
max
yt∈[K]

⟫
n

t=1

[
n∑
t=1

`(ẑt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)
]

≤ ⟪ sup
xt∈X

inf
ẑt∈Z

max
yt∈[K]

⟫
n

t=1

[
n∑
t=1

`(ẑt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)
]
.
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Note that Z is a compact subset of a separable metric space and that ` is convex with respect
to ẑ. Therefore, using repeated application of minimax theorem following Section 2.6, the
minimax value can be written as:

= ⟪ sup
xt∈X

sup
pt∈∆K

inf
ẑt∈Z

Eyt∼pt⟫
n

t=1

[
n∑
t=1

`(ẑt, yt)− inf
f∈F

n∑
t=1

`(f(xt), yt)
]
.

Now we perform a standard manipulation of the sup and loss terms as in Rakhlin et al.
(2010):

= ⟪ sup
xt∈X

sup
pt∈∆K

Eyt∼pt⟫
n

t=1

[
n∑
t=1

inf
ẑt∈Z

Eyt∼pt [`(ẑt, yt)]− inf
f∈F

n∑
t=1

`(f(xt), yt)
]

(10.13)

= sup
x,p

Ey∼p

[
n∑
t=1

inf
ẑt∈Z

Eyt∼pt(y) [`(ẑt, yt)]− inf
f∈F

n∑
t=1

`(f(xt(y)), yt)
]
. (10.14)

In the final line above we have introduced new notation. x and p are X - and ∆K-valued
K-ary trees of depth n. That is, x = (x1, . . . ,xn) where xt : [K]t−1 → X and similarly for
the tree p = (p1, . . . ,pn), pt : [K]t−1 → ∆K . The notation “y ∼ p” refers to the process in
which we first draw y1 ∼ p1, then draw yt ∼ pt(y1, . . . , yt−1) for subsequent timesteps t. We
also overload the notation as pt(y) := pt(y1:t−1), and likewise for x.

With this notation, (10.14) is seen to be (10.13) rewritten using that at time t, based on
draw of previous ys, xt and pt are chosen to maximize the remaining game value; this process
be represented via K-ary tree.

Note that the sequence (ẑt)t≤n being minimized over in (10.13) can depend on the full trees
x and p, but that it is adapted to the path (yt)t≤n, meaning that the value at time t (ẑt)
can only depend on the y1:t−1. This property is imporant because the choice we exhibit for
(ẑt)t≤n will indeed depend on the full trees.

In light of the discussion in Section 10.7.3, the key advantage of having moved to the dual
game above is that we can condition on the K-ary tree x and cover F only on this tree. Let
V γ be a minimal γ-sequential cover of ` ◦ F on the tree x with respect to the L2 norm (in
the sense of Definition 17).

Keeping the tree x fixed, for each tree v ∈ V γ, each f ∈ F , we define a class of trees
Fv “centered” at v—in a sense that will be made precise in a moment—via the following
procedure.

• Fv = ∅.

• For each f ∈ F and y ∈ [K]n with
√

1
n

∑n
t=1 maxy′′t ∈[K](`(f(xt(y)), y′′t )− `(vt(y), y′′t ))2 ≤ γ:

– Define a RK-valued K-ary tree uf,y via: For each y′ ∈ [K]n,

(uf,y)t(y′)
:= f(xt(y′))1

{
y′1 = y1, . . . , y

′
t−1 = yt−1

}
+ vt(y′)1

{
¬(y′1 = y1, . . . , y

′
t−1 = yt−1)

}
.

In other words, uf,y is equal to f ◦ x on the path y, and equal to v everywhere else.
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– Add uf,y to Fv.

The class Fv has two important properties which are formally proven in an auxiliary lemma,
Lemma 24: First, its L2 covering number is (up to low order terms) bounded in terms of the
L2 covering number of the class F ◦ x, so it has similar complexity to this class. Second, its
L2 radius is bounded by γ, in the sense that its covering number at scale γ is at most 1.

Note that on any path y ∈ [K]n and for each f ∈ F , there exist v ∈ V γ and u ∈ Fv such
that f(xt(y)) = ut(y). This is because a v that is γ-close to f on the path y through x is
guaranteed by the cover property of V γ , and so we can take uf,y in Fv as the desired u. This
implies that

inf
f∈F

n∑
t=1

`(f(xt(y)), yt) ≥ min
v∈V γ

inf
u∈Fv

n∑
t=1

`(ut(y), yt).

With this we are ready to return to the minimax rate. We already established that

Vn(F) ≤ sup
x,p

Ey∼p

[
n∑
t=1

inf
ẑt∈Z

Eyt∼pt(y) [`(ẑt, yt)]− inf
f∈F

n∑
t=1

`(f(xt(y)), yt)
]
.

We now move to an upper bound based on the constructions for the tree collections V γ and
{Fv}v∈V γ . These collections depend only on the tree x at the outer supremum above. Writing
the choice of these collections as an infimum to make its dependence on the other quantities
in the random process as explicit as possible, and using the containment just shown:

≤ sup
x

inf
V γ

inf
{Fv}v∈V γ

sup
p

Ey∼p

[
n∑
t=1

inf
ẑt∈Z

Eyt∼pt(y) [`(ẑt, yt)]− min
v∈V γ

inf
u∈Fv

n∑
t=1

`(ut(y), yt)
]
.

For the last time in the proof, we introduce a new collection of trees. For each v ∈ V γ

we introduce a Z-valued K-ary tree ŷv, with ŷv
t : [K]t−1 → Z. We postpone explicitly

constructing the trees for now, but the reader may think of each tree ŷv as representing the
optimal strategy for the set Fv in a sense that will be made precise in a moment.

= sup
x

inf
V γ

inf
{Fv}v∈V γ

inf
{ŷv}v∈V γ

sup
p

Ey∼p

[
n∑
t=1

inf
ẑt∈Z

Eyt∼pt(y) [`(ẑt, yt)]

− min
v∈V γ

{
n∑
t=1

`(ŷv
t (y), yt)

−
n∑
t=1

`(ŷv
t (y), yt) + inf

u∈Fv

n∑
t=1

`(ut(y), yt)
}]
.

≤ sup
x

inf
V γ

inf
{Fv}v∈V γ

inf
{ŷv}v∈V γ



sup
p

Ey∼p

[ n∑
t=1

inf
ẑt∈Z

Eyt∼pt(y) [`(ẑt, yt)]− min
v∈V γ

n∑
t=1

`(ŷv
t (y), yt)

]
︸ ︷︷ ︸

(?)

+ sup
p

Ey∼p

[
max
v∈V γ

{
n∑
t=1

`(ŷv
t (y), yt)− inf

u∈Fv

n∑
t=1

`(ut(y), yt)
}]

︸ ︷︷ ︸
(??)


.

(10.15)
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We now bound the terms (?) and (??) individually by instantiating specific choices for (ẑt)t≤n
and {ŷv}.

Term (?) We select (ẑt)t≤n using the Aggregating Algorithm as configured in Lemma 23,
taking F to be the finite collection of sequences {ŷv}v∈V γ . Since each tree has the property
that ŷv

t only depends on y1:t−1, Lemma 23 indeed applies, which means that for any sequence
y1:n ∈ [K]n of labels the algorithm deterministically satisfies the regret inequality

n∑
t=1

`(ẑt, yt)− min
v∈V γ

n∑
t=1

`(ŷv
t (y), yt) ≤ log|V γ|+ 2.

Since the algorithm guarantees ‖ẑt‖∞ ≤ log(Kn), one can verify that ẑt ∈ Z. Furthermore,
ẑt depends only on y1:t−1, and so the predictions of the Aggregating Algorithm are a valid
choice for the infimum in (?). This implies that

(?) ≤ sup
x

log|V γ|+ 2 ≤ logN2(γ, ` ◦ F) + 2,

since the regret inequality holds for every possible draw of y1:n in the expression (?).

Term (??) First, observe that each tree class Fv is uniformly bounded in the sense that

sup
u∈Fv

sup
y∈[K]n

max
t∈[n]
‖ut(y)‖∞ <∞.

This holds because ut(y) is either equal to vt(y), which is finite, or is equal to f(xt(y)) for
some f ∈ F , and the class F was already assumed to be uniformly bounded.

To bound this term we need a variant of the sequential Rademacher complexity regret bound
of (Rakhlin et al., 2010), which shows that there exists a deterministic strategy for competing
against any collection of trees. This is proven in the auxiliary Lemma 25 following this proof.

In particular, for each tree class Fv, there exists a deterministic strategy ŷv
t that guarantees

the inequality
n∑
t=1

`(ŷv
t , yt)− inf

u∈Fv

n∑
t=1

`(ut(y), yt) ≤ 2 ·max
y,y′

Eε sup
u∈Fv

[
n∑
t=1

εt`(ut(y1:t−1(ε)),y′t(ε))
]

+ 2,

holds for every sequence, where the supremum on the right-hand-side ranges over [K]-valued
binary trees. Futhermore, ŷv

t is guaranteed by Lemma 25 to lie in the class Z. We choose this
strategy for the collection {ŷv} being minimized over in (10.15). Since the regret inequality
from Lemma 25 holds deterministically for all sequences y for each v, we have that

(??) ≤ 2 ·max
v∈V γ

max
y,y′

Eε sup
u∈Fv

[
n∑
t=1

εt`(ut(y1:t−1(ε)),y′t(ε))
]

+ 2.
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For each choice of v, y, y′ at the outer supremum, we define a class of real-valued trees
Wv,y,y′ via {(wt)t≤n : wt(ε) := `(ut(y(ε1:t−1)),y′t(ε)) | u ∈ Fv}. Lemma 26 then implies

(??) ≤ 2 max
v∈V γ

max
y,y′

inf
α>0

{
4αn+ 12

∫ rad2(Wv,y,y′ )

α

√
n logN2(δ,Wv,y,y′)dδ

}
+ 2,

with the real-valued covering number N2 and radius rad2 defined as in Lemma 26.

We now show how to bound this covering number in terms of the covering number for Fv.
Suppose that Z is a collection of RK-valued K-ary trees that form a δ-cover for Fv in the
sense of Definition 15. Then we have

sup
u∈Fv

max
ε∈{±1}n

inf
z∈Z

√√√√ 1
n

n∑
t=1

(`(ut(y(ε)),y′t(ε))− `(zt(y(ε)),y′t(ε)))2

≤ sup
u∈Fv

max
ε∈{±1}n

inf
z∈Z

√√√√ 1
n

n∑
t=1

max
y′t∈[K]

(`(ut(y(ε)), y′t)− `(zt(y(ε)), y′t))2

≤ sup
u∈Fv

max
y∈[K]n

inf
z∈Z

√√√√ 1
n

n∑
t=1

max
y′t∈[K]

(`(ut(y), y′t)− `(zt(y), y′t))2

≤ δ.

This implies that for any cover of Fv in the sense of Definition 15 we
can construct a cover for Wv,y,y′ at the same scale using the construction
{(wt)t≤n : wt(ε) := `(zt(y(ε1:t−1)),y′t(ε)) | z ∈ Z}. Consequently, we have

(??) ≤ 2 max
v∈V γ

inf
α>0

{
4αn+ 12

∫ rad2(Fv)

α

√
n logN2(δ, ` ◦ Fv)dδ

}
+ 2.

In light of Lemma 24, this is further upper bounded by

(??) ≤ 2 inf
α>0

{
4αn+ 12

∫ γ

α

√
n log(N2(δ, ` ◦ F ,x)n)dδ

}
+ 2

≤ 2 inf
α>0

{
4αn+ 12

∫ γ

α

√
n log(N2(δ, ` ◦ F)n)dδ

}
+ 2.

Final bound Combining (?) and (??), we have

Vol
n (F) ≤ logN2(γ, ` ◦ F) + inf

γ≥α>0

{
8αn+ 24

∫ γ

α

√
n log(N2(δ, ` ◦ F)n)dδ

}
+ 4.

for any fixed γ. Optimizing over γ yields the result.
Lemma 24. Let Fv be defined as in the proof of Theorem 35 for trees v and x and scale γ.
Then it holds that

1. N2(γ, ` ◦ Fv) ≤ 1.

2. N2(α, ` ◦ Fv) ≤ n · N2(α, ` ◦ F ,x) for all α > 0.
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Proof of Lemma 24.
First claim This is essentially by construction. Recall that each element of Fv is of the
form

(uf,y)t(y′) := f(xt(y′))1
{
y′1 = y1, . . . , y

′
t−1 = yt−1

}
+ vt(y′)1

{
¬(y′1 = y1, . . . , y

′
t−1 = yt−1)

}
.

for some path y ∈ [K]n and f ∈ F for which√√√√ 1
n

n∑
t=1

max
y′′t ∈[K]

(`(f(xt(y)), y′′t )− `(vt(y), y′′t ))2 ≤ γ. (10.16)

These properties imply that {v} is a sequential γ-cover. Indeed, using the explicit form for
uf,y above, it can be seen that for each path y′ ∈ [K]n, there exists some time 1 < τ ≤ n+ 1
such that

(uf,y)t(y′) =
{
f(xt(y′)), if t < τ,
vt(y′), if t ≥ τ.

it also holds that yt = y′t for all t < τ − 1.

Using this representation we have that for any path y′ ∈ [K]n:√√√√ 1
n

n∑
t=1

max
y′′t ∈[K]

(`((uf,y)t(y′), y′′t )− `(vt(y′), y′′t ))2

=

√√√√ 1
n

τ−1∑
t=1

max
y′′t ∈[K]

(`(f(xt(y′), y′′t )− `(vt(y′), y′′t ))2.

Now use that x1, . . . ,xτ−1 and v1, . . . ,vτ−1 only depend on y′1, . . . , y
′
τ−2, and that

y′1, . . . , y
′
τ−2 = y1, . . . , yτ−2:

=

√√√√ 1
n

τ−1∑
t=1

max
y′′t ∈[K]

(`(f(xt(y), y′′t )− `(vt(y), y′′t ))2

≤

√√√√ 1
n

n∑
t=1

max
y′′t ∈[K]

(`(f(xt(y), y′′t )− `(vt(y), y′′t ))2

≤ γ.

Second claim Let V be a cover for ` ◦ F on x of size N2(α, ` ◦ F ,x). Assume |V | <∞
as the claim holds trivially otherwise. We will construct from V a cover Ṽ for ` ◦ Fv with
the following procedure:

• Ṽ = ∅.

• For each K-ary RK-valued tree z ∈ V and each time τ ∈ {2, . . . , n+ 1}:

– Construct tree K-ary RK-valued tree z(τ) via

z(τ)
t (y) = zt(y)1{t < τ}+ vt(y)1{t ≥ τ}.
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– Add z(τ) to Ṽ .

Clearly
∣∣∣Ṽ ∣∣∣ ≤ n · |V |. We now show that Ṽ is an α-cover for ` ◦ Fv.

Let uf,y be an element of Fv of the form described in the proof of the first claim and let y′ ∈
[K]n be a particular path. Let τ be such that (uf,y)t(y′) = f(xt(y′))1{t < τ}+vt(y′)1{t ≥ τ}.
Let z ∈ V be α-close to f on the path y′ through x, i.e.√√√√ 1

n

n∑
t=1

max
y′′t ∈[K]

(`(f(xt(y′), y′′t )− `(zt(y′), y′′t ))2 ≤ α.

Existence of such a z is guaranteed by the cover property of V . We will show that z(τ) is
α-close to uf,y on y′. Indeed, we have√√√√ 1

n

n∑
t=1

max
y′′t ∈[K]

(`((uf,y)t(y′), y′′t )− `(z(τ)
t (y′), y′′t ))2

=

√√√√ 1
n

τ−1∑
t=1

max
y′′t ∈[K]

(`(f(xt(y′), y′′t )− `(zt(y′), y′′t ))2 + 1
n

n∑
t=τ

max
y′′t ∈[K]

(`(vt(y′), y′′t )− `(vt(y′), y′′t ))2

=

√√√√ 1
n

τ−1∑
t=1

max
y′′t ∈[K]

(`(f(xt(y′), y′′t )− `(zt(y′), y′′t ))2

≤

√√√√ 1
n

n∑
t=1

max
y′′t ∈[K]

(`(f(xt(y′), y′′t )− `(zt(y′), y′′t ))2

≤ α.

Since this argument works for any uf,y ∈ Fv this establishes that Ṽ is an α-cover of Fv.

The next lemma is almost the same as the sequential Rademacher complexity bound in
Rakhlin et al. (2010), with the only technical difference being that the learner competes with
a class of trees rather than a class of fixed functions. It is proven using the same argument
as in that paper.
Lemma 25. Let U be any collection of RK-valued K-ary trees of depth n. Suppose that
C := supu∈U supy∈[K]n maxt∈[n]‖ut(y)‖∞ <∞. Then there exists a strategy ẑt that guarantees

n∑
t=1

`(ẑt, yt)− inf
u∈U

n∑
t=1

`(ut(y), yt) ≤ 2 ·max
y,y′

Eε sup
u∈U

[
n∑
t=1

εt`(ut(y1:t−1(ε)),y′t(ε))
]

+ 2,

where y and y′ are [K]-valued binary trees of depth n and ε = (ε1, . . . , εn) are Rademacher
random variables.

Furthermore, the predictions (ẑt)t≤n satisfy ‖ẑt‖∞ ≤ log(Kn).

Proof of Lemma 25. Define Z :=
{
z ∈ RK | ‖z‖∞ ≤ C

}
. The minimax optimal regret

amongst deterministic strategies taking values in Z is given by

Vol
n (U) := ⟪ inf

ẑt∈RK
max
yt∈[K]

⟫
n

t=1

[
n∑
t=1

`(ẑt, yt)− inf
u∈U

n∑
t=1

`(ut(y), yt)
]
.
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Once again, this proof closely follows the sequential Rademacher complexity bound from
Rakhlin et al. (2010). We only sketch the first few steps for this proof as they are identical
to the first few steps of the proof of Theorem 35, which is admissible due to compactness of
Z. Using the minimax swap as in that theorem, we can move to an upper bound of

≤ ⟪ sup
pt∈∆K

Eyt∼pt⟫
n

t=1

[
n∑
t=1

inf
ẑt∈Z

Eyt∼pt [`(ẑt, yt)]− inf
u∈U

n∑
t=1

`(ut(y), yt)
]

= ⟪ sup
pt∈∆K

Eyt∼pt⟫
n

t=1
sup
u∈U

[
n∑
t=1

inf
ẑt∈Z

Eyt∼pt [`(ẑt, yt)]−
n∑
t=1

`(ut(y), yt)
]
.

Now we choose ẑt to match the value of ut(y) = ut(y1:t−1), which is possible by definition of
Z:

≤ ⟪ sup
pt∈∆K

Eyt∼pt⟫
n

t=1
sup
u∈U

[
n∑
t=1

Eyt∼pt [`(ut(y), yt)]−
n∑
t=1

`(ut(y), yt)
]
.

Using Jensen’s inequality, we pull the conditional expectaitons in the first term outside the
supremum over u by introducing a tangent sequence (y′t)t≤n, where y′t follows the distribution
pt conditioned on y1:t−1.

≤ ⟪ sup
pt∈∆K

Eyt,y′t∼pt⟫
n

t=1
sup
u∈U

[
n∑
t=1

`(ut(y), y′t)−
n∑
t=1

`(ut(y), yt)
]
.

Since yt and y′t are conditionally i.i.d., we can introduce a Rademacher random variable εt at
each timestep t as follows:

= ⟪ sup
pt∈∆K

Eyt,y′t∼pt Eεt⟫
n

t=1
sup
u∈U

[
n∑
t=1

εt(`(ut(y), y′t)− `(ut(y), yt))
]
.

To decouple the arguments to the losses from the arugments to the tree u, we move to a
pessimistic upper bound:

≤ ⟪ sup
pt∈∆K

Eyt∼pt max
y′t,y
′′
t ∈[K]

Eεt⟫
n

t=1
sup
u∈U

[
n∑
t=1

εt(`(ut(y), y′t)− `(ut(y), y′′t ))
]

= ⟪ max
yt,y′t,y

′′
t ∈[K]

Eεt⟫
n

t=1
sup
u∈U

[
n∑
t=1

εt(`(ut(y), y′t)− `(ut(y), y′′t ))
]
.

We now complete the symmetrization as follows:

≤ ⟪ max
yt,y′t,y

′′
t ∈[K]

Eεt⟫
n

t=1
sup
u∈U

[
n∑
t=1

εt`(ut(y), y′t)
]

+ ⟪ max
yt,y′t,y

′′
t ∈[K]

Eεt⟫
n

t=1
sup
u∈U

[
n∑
t=1

εt`(ut(y), y′′t )
]

= 2 · ⟪ max
yt,y′t∈[K]

Eεt⟫
n

t=1
sup
u∈U

[
n∑
t=1

εt`(ut(y), y′t)
]

= 2 ·max
y,y′

Eε sup
u∈U

[
n∑
t=1

εt`(ut(y1:t−1(ε)),y′t(ε))
]
.
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In the last line y and y′ are taken to be [K]-valued binary trees of depth n, so that
yt(ε) = yt(ε1, . . . εt−1) and likewise for y′.

Finally, to guarantee the boundedness of predictions claimed in the lemma statement, we
apply Lemma 21 to the minimax optimal strategy, for which we just showed regret is bounded
by the sequential Rademacher complexity.

The last auxiliary lemma in this section is a slight variant of the Dudley entropy integral
bound for sequential Rademacher complexity. This lemma can be extracted from the proof
of Theorem 4 in Rakhlin et al. (2015). We do not repeat the proof here.
Lemma 26. Let W be a collection of R-valued binary trees. Define Np(α,W ) to be the size
of the smallest class of trees V such that

∀w ∈ W, ε ∈ {±1}n, ∃v ∈ V s.t.
(

1
n

n∑
t=1

(wt(ε)− vt(ε))p
)1/p

≤ α. (10.17)

Let radp(W ) := min{α | Np(α,W ) = 1}. Then it holds that

Eε sup
w∈W

n∑
t=1

εtwt(ε) ≤ inf
α>0

{
4αn+ 12

∫ rad2(W )

α

√
n logN2(δ,W )dδ

}
. (10.18)

10.7.4 Proof of Theorem 36

Proof of Theorem 36. First, note that an easy calculation on the softmax function σ
implies that for all k ∈ [K], pt(k) ≥ (1−µ) exp(−2BR)+µ

K
. So, defining L = K

(1−µ) exp(−2BR)+µ , we
have ‖ỹt‖1 ≤ L. Thus, Theorem 32 applied to A guarantees that for any W ∈ W ,

n∑
t=1

`(ẑt, ỹt)−
n∑
t=1

`(Wxt, ỹt) ≤ 5LdK · log
(
BRn
dK

+ e
)

+ 2µ
n∑
t=1
‖ỹt‖1.

Fix a round t and let Et[·] denote expecation conditioned on ŷ1, ŷ2, . . . , ŷt−1. The construction
of the feedback vectors ỹt via importance weighting guarantees Et[ỹt] = 1yt , where 1k denotes
the indicator vector supported on coordinate k. Hence, Et[`(ẑt, ỹt)] = `(ẑt, yt) = − log(pt(yt))
and Et[`(Wxt, ỹt)] = `(Wxt, yt). Furthermore, it is easy to check that Et[‖ỹt‖1] = 1. Thus,
we conclude that

n∑
t=1

E[− log(pt(yt))]−
n∑
t=1

`(Wxt, yt) ≤ 5LdK · log
(
BRn
dK

+ e
)

+ 2µn.

Now if we set µ = 0, then the right-hand side is bounded by O(dK2 exp(2BR) log
(
BRn
dK

+ e
)
).

If we set µ =

√
dK2 log

(
BRn
dK

+e
)

n
, the right-hand side is bounded by O

(√
dK2 log(BRn

dK
+ e)n

)
.

Choosing the setting of µ that gives the smaller upper bound, and the fact that the log loss
upper bounds the probability of making a mistake (because − log(pt(yt)) ≥ 1− pt(yt)), we
get the stated bound on the expected number of mistakes.
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10.7.5 Proofs from Section 10.7.5

Proof of Theorem 37. Denote the number of mistakes of the i-th expert (which is the
combination of the first i weak learners) by

Mi =
n∑
t=1

1

{
ŷit 6= yt

}
=

n∑
t=1

1

{
arg max

k
sit(k) 6= yt

}
,

with the convention that M0 = n. The weights vit simply implement the multiplicative
weights strategy, and so Lemma 28, which gives a concentration bound based on Freedman’s
inequality implies that with probability at least 1− δ,9

n∑
t=1

1{ŷt 6= yt} ≤ 4 min
i
Mi + 2 log(N/δ). (10.19)

Note that if k? := arg maxk si−1
t (k) 6= yt, then σ(si−1

t )k? ≥ σ(si−1
t )yt and σ(si−1

t ) ∈ ∆K imply
σ(si−1

t )yt ≤ 1/2, which then implies ∑k 6=yt σ(si−1
t )k ≥ 1/2 and finally

−
n∑
t=1

Ĉi
t(yt, yt) =

n∑
t=1

∑
k 6=yt

σ(si−1
t )k ≥

Mi−1

2 . (10.20)

This also holds for i = 1 because s0
t = 0 and −C1

t (yt, yt) = (K − 1)/K ≥ 1/2.

We now examine the regret guarantee provided by each logistic regression instance. For each
i ∈ [N ] we have

n∑
t=1

`(sit, yt)− inf
W∈W

n∑
t=1

`(Wx̃it, yt) ≤ O(log(n log(nK)))

This follows from Theorem 32 using L = 1, DW = 1, B = 3 for `1 norm, ‖yt‖1 = 1, µ = 1/n,
and ‖x̃it‖∞ ≤ log(nK), where the last fact is implied by the second statement of Theorem 32:
‖sit‖∞ ≤ log(K/µ) = log(nK) and thus ‖x̃it‖∞ =

∥∥∥(elit , si−1
t )

∥∥∥
∞
≤ log(nK). Now define the

difference between the total loss of the i-th and (i− 1)-th expert to be

∆i =
n∑
t=1

`(sit, yt)− `(si−1
t , yt).

Since infW∈W
∑n
t=1 `(Wx̃it, yt) = infα∈[−2,2]

∑n
t=1 `(αelit + si−1

t , yt), the regret bound above
implies

∆i ≤ inf
α∈[−2,2]

[
n∑
t=1

`(αelit + si−1
t , yt)− `(si−1

t , yt)
]

+O(log(n log(nK))).

9Note that previous online boosting works (Beygelzimer et al., 2015; Jung et al., 2017) use a simpler
Hoeffding bound at this stage, which picks up an extra

√
n term. For their results this is not a dominant

term, but in our case it can spoil the improvement given by improper logistic regression, and so we use
Freedman’s inequality to remove it.
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By Lemma 29 each term in the sum above satisfies

`(αelit+s
i−1
t , yt)−`(si−1

t , yt) ≤
{

(eα − 1)σ(si−1
t )lit = (eα − 1)Ĉi

t(yt, lit), lit 6= yt,

(e−α − 1)(1− σ(si−1
t )yt) = −(e−α − 1)Ĉi

t(yt, yt), lit = yt.

With notation wi = −∑n
t=1 Ĉ

i
t(yt, yt), ci+ = − 1

wi
∑
t:lit=yt Ĉ

i
t(yt, yt), and ci− =

1
wi
∑
t:lit 6=yt Ĉ

i
t(yt, lit), we rewrite

inf
α∈[−2,2]

[
n∑
t=1

`(αelit + si−1
t , yt)− `(si−1

t , yt)
]

= wi · inf
α∈[−2,2]

[
(eα − 1)ci− + (e−α − 1)ci+

]
.

One can verify that wi > 0, ci−, ci+ ≥ 0, ci+−ci− = γi ∈ [−1, 1] and ci+ +ci− ≤ 1. By Lemma 30,
it follows that

wi · inf
α∈[−2,2]

[
(e−α − 1)ci− + (eα − 1)ci+

]
≤ − wiγ2

i

2 .

Summing ∆i over i ∈ [N ], we have
n∑
t=1

`(sNt , yt)−
n∑
t=1

`(s0
t , yt) =

N∑
i=1

∆i ≤ −
1
2

N∑
i=1

wiγ2
i +O(N log(n log(nK))). (10.21)

We lower bound the left hand side as
n∑
t=1

`(sNt , yt)−
n∑
t=1

`(s0
t , yt) ≥ −

n∑
t=1

`(s0
t , yt) = −n log(K),

where the inequality uses non-negativity of the logistic loss and the equality is a direct
calculation from s0

t = 0. Next we upper bound the right-hand side of (10.21). Since
wi = −∑n

t=1 Ĉ
i
t(yt, yt), Eq. (10.20) implies

−1
2

N∑
i=1

wiγ2
i ≤ −

1
4

N∑
i=1

Mi−1γ
2
i ≤ − min

i∈[N ]
Mi−1 ·

1
4

N∑
i=1

γ2
i ≤ − min

i∈[N ]
Mi ·

1
4

N∑
i=1

γ2
i .

Combining our upper and lower bounds on ∑N
i=1 ∆i now gives

−n log(K) ≤ − 1
2

N∑
i=1

wiγ2
i +O(N log(n log(K))) ≤ −min

i∈[N ]
Mi ·

1
4

N∑
i=1

γ2
i +O(N log(n log(nK))).

(10.22)
Rearranging, we have

min
i∈[N ]

Mi ≤ O

(
n log(K)∑N

i=1 γ
2
i

)
+O

(
N log(n log(nK))∑N

i=1 γ
2
i

)
.

Returning to (10.19), this implies that with probability at least 1− δ,
n∑
t=1

1{ŷt 6= yt} ≤ O

(
n log(K)∑N

i=1 γ
2
i

)
+O

(
N log(n log(nK))∑N

i=1 γ
2
i

)
+ 2 log(N/δ),

which finishes the proof.
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Proof of Proposition 18. By the definition of the cost matrices, the weak learning condi-
tion

n∑
t=1

Ci
t(yt, lit) ≤

n∑
t=1

E
k∼uγ,yt

[
Ci
t(yt, k)

]
+ S

implies
n∑
t=1

Ĉi
t(yt, lit) ≤

n∑
t=1

E
k∼uγ,yt

[
Ĉi
t(yt, k)

]
+KS

Expanding the definitions of uγ,yt and Ĉi
t , we have

E
k∼uγ,yt

[
Ĉi
t(yt, k)

]
=
(1− γ

K

)(σ(si−1
t )yt − 1) +

∑
k 6=yt

σ(si−1
t )k

+γ(σ(si−1
t )yt−1) = γĈi

t(yt, yt).

So we have
n∑
t=1

Ĉi
t(yt, lit) ≤ γ

n∑
t=1

Ĉi
t(yt, yt) +KS,

or, since Ĉi
t(yt, yt) < 0,

γi ≥ γ − KS

wi
,

where wi = −∑n
t=1C

i
t(yt, yt) as in the proof of Theorem 37. Since a ≥ b − c implies

a2 ≥ b2 − 2bc for non-negative a, b and c, we further have γ2
i ≥ γ2 − 2γKS

wi
.

Returning to the inequality (10.22), the bound we just proved implies

−n log(K) ≤ − 1
2

N∑
i=1

wiγ2 + γKSN +O(N log(n log(nK)))

≤ − γ2

4

N∑
i=1

Mi−1 + γKSN +O(N log(n log(nK))) (by (10.20))

≤ − min
i∈[N ]

Mi ·
γ2N

4 + γKSN +O(N log(n log(nK))).

From here we proceed as in the proof of Theorem 37 to get the result.
Lemma 27 (Freedman’s Inequality (Beygelzimer et al., 2011)). Let (Zt)t≤n be a real-valued
martingale difference sequence adapted to a filtration (Jt)t≤n with |Zt| ≤ R almost surely.
For any η ∈ [0, 1/R], with probability at least 1− δ,

n∑
t=1

Zt ≤ η(e− 2)
n∑
t=1

E
[
Z2
t | Jt

]
+ log(1/δ)

η
(10.23)

for all η ∈ [0, 1/R].
Lemma 28. With probability at least 1−δ, the predictions (ŷt)t≤n generated by Algorithm 11
satisfy

n∑
t=1

1{ŷt 6= yt} ≤ 4 min
i

n∑
t=1

1

{
ŷit 6= yt

}
+ 2 log(N/δ).
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Proof. Define a filtration (Jt)t≤n via

Jt = σ((x1, (li1)i≤N , y1, i1), . . . , (xt−1, (lit−1)i≤N , yt−1, it−1), xt, (lit)i≤N).

Since Line 18 of Algorithm 11 implements the multiplicative weights strategy with learning
rate 1, the standard analysis (e.g. Cesa-Bianchi and Lugosi (2006)) implies that the conditional
expectations under this strategy enjoy a regret bound of

n∑
t=1

E[1{ŷt 6= yt} | Jt] ≤ 2 min
i

n∑
t=1

1

{
ŷit 6= yt

}
+ log(N).

Let Zt = 1{ŷt 6= yt} − E[1{ŷt 6= yt} | Jt]. Lemma 27 applied with η = 1 shows that with
probability at least 1− δ,

n∑
t=1

Zt ≤
n∑
t=1

E
[
Z2
t | Jt

]
+ log(1/δ).

Since variance is bounded by second moment, we have
n∑
t=1

E
[
Z2
t | Jt

]
≤

n∑
t=1

E
[
(1{ŷt 6= yt})2 | Jt

]
=

n∑
t=1

E[1{ŷt 6= yt} | Jt].

Rearranging, we have proved that with probability 1− δ,
n∑
t=1

1{ŷt 6= yt} ≤ 2
n∑
t=1

E[1{ŷt 6= yt} | Jt] + log(1/δ) ≤ 4 min
i

n∑
t=1

1

{
ŷit 6= yt

}
+ 2 log(N/δ).

Lemma 29. The multiclass logistic loss satisfies for any z ∈ RK and y ∈ [K],

`(z + αel, y)− `(z, y) ≤
{

(eα − 1)σ(z)l, l 6= y,
(e−α − 1)(1− σ(z)y), l = y.

Proof. When l 6= y we have

`(z + αel, y)− `(z, y) = log
(

1 +∑
k 6=y,l e

zk−zy + ezl+α−zy

1 +∑
k 6=y ezk−zy

)

= log
(

1 + (eα − 1) ezl−zy

1 +∑
k 6=y ezk−zy

)
= log(1 + (eα − 1)σ(z)l)
≤ (eα − 1)σ(z)l. (log(1 + x) ≤ x)
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When l = y we have

`(z + αel, y)− `(z, y) = log
(

1 + e−α
∑
k 6=y e

zk−zy

1 +∑
k 6=y ezk−zy

)

= log
(

1 + (e−α − 1)
∑
k 6=y e

zk−zy

1 +∑
k 6=y ezk−zy

)

= log
1 + (e−α − 1)

∑
k 6=y
σ(z)k


= log

(
1 + (e−α − 1)(1− σ(z)y)

)
≤ (e−α − 1)(1− σ(z)y). (log(1 + x) ≤ x)

Lemma 30 (Jung et al. (2017)). For any A,B ≥ 0 with A−B ∈ [−1,+1] and A+B ≤ 1,

inf
α∈[−2,2]

[
A(eα − 1) +B(e−α − 1)

]
≤ − (A−B)2

2 .

10.7.6 Efficient Implementation

In this section we discuss an efficient (i.e. polynomial time in the parameters of the problem)
randomized implementation of Algorithm 9. The main idea is to exploit the log-concavity
of the density of Pt in the algorithm and to use well-established Markov chain Monte Carlo
samplers for such densities to collect enough matrices W sampled from the distribution to
approximate the prediction ẑt sufficiently well to ensure the increase in regret is small.

Fix a round t. Recall that the density on W we wish to sample from in round t of the
algorithm is

Pt(W ) ∝ exp(− 1
L

∑t−1
s=1`(Wxs, ys)).

For notational convenience, define the function Ft : W → R as Ft(W ) :=
exp(− 1

L

∑t−1
s=1`(Wxs, ys)). It is easy to check that Ft is log-concave.

Assumption 6. We have access to a sampler that makes poly(1/ε, n, d, B,R) queries to Ft
and produces a sample W with distribution P̃t such that dTV(P̃t, Pt) ≤ ε.

Such samplers are well-known in the literature: for example, the hit-and-run sampler (Lovász
and Vempala, 2006), the projected Langevin Monte Carlo sampler (Bubeck et al., 2018), and
the Dikin walk sampler (Narayanan and Rakhlin, 2017). It is easy to derive appropriate
bounds on all the relevant parameters of Ft that are involved in the analysis of these samplers
so that the samplers run in polynomial time. While this gives a theoretically efficient
implementation, the running time bounds are too loose to be practical (for example, see the
calculations below for projected Langevin Monte Carlo sampler). We have not attempted to
improve these running time bounds; that is a direction for future work.
Example 23 (Bubeck et al. (2018)). Let W have density P ∝ e−f for some β-smooth, S-
Lipschitz convex function f over a convex body W contained in a euclidian ball of radius D in
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dimension d. Projected Langevin Monte Carlo produces a sample from P̃ with dTV(P̃ , P ) ≤ ε

after O
(
D6 max{d,DS,Dβ}12

ε12

)
evaluations. For our setting, when ‖xt‖2 ≤ R and ‖yt‖1 ≤ L, the

loss w 7→ `(〈w, xt〉, yt) is O(RL)-Lipschitz and smooth. We therefore have S, β ≤ RLn and
D = B, which yields the following bound on the number of queries to Ft:

O

(
B6 max{dK,BRLn}12

ε12

)
.

Given access to a sampler, we can now prove Proposition 17. In the following, we use
the phrase “with high probability” to indicate that the statement referred to holds with
probability at least 1− δ for any δ > 0. We also use the notation Õ(·) and Ω̃(·) to suppress
logarithmic dependence on 1/δ, d, K, and n.

Proof of Proposition 17. The idea is very straightforward: for some parameters m ∈ N
and ε > 0 to be specified later, in each round t, simply use the sampler with error tolerance ε

2
repeatedly m times to collect samples W (i) for i ∈ [m] and then approximate the prediction
by z̃t = σ+

(
smoothµ

(
Ei∼[m]

[
σ(W (i)xt)

]))
. Here, “i ∼ [m]” denotes sampling i uniformly

from [m], and m = poly(n, d,B,R, 1/δ) will be chosen to be large enough to ensure that this
approximation incurs only 1/n additional loss in each round, with high probability, and thus
at most O(1) additional loss over all n rounds.

It remains to provide appropriate bounds on m. In the following, we will fix the round t and
drop the subscript t from Pt, P̃t, xt, yt, etc. for notational clarity.

Define the distributions p = smoothµ(EW∼P [σ(Wx)]), p̃ = smoothµ(EW∼P̃ [σ(Wx)]) and
˜̃p = smoothµ

(
Ei∼[m]

[
σ(W (i)x)

])
. Then standard Chernoff-Hoeffding bounds and a union

bound over all k ∈ [K] imply that if m = Ω̃(1/ε2), then with high probability, we have
‖p̃ − ˜̃p‖∞ ≤ ε

2 . Furthermore, the sampler ensures dTV(P̃ , P ) ≤ ε
2 , which implies that

‖p− p̃‖∞ ≤ ε
2 since each coordinate of p and p̃ are i n [0, 1. Thus, by the triangle inequality,

we have ‖p− ˜̃p‖∞ ≤ ε.

We now bound the excess loss for using ˜̃p instead of p in the algorithm, using the fact the
weighted multiclass logistic loss can be equivalently viewed as a weighted multiclass log loss
after passing the logits through the softmax function σ. Thus, the additional loss equals∑

k∈[K]
yk log

(
pk
˜̃pk

)
≤

∑
k∈[K]

yk log
( ˜̃pk+ε

˜̃pk

)
≤

∑
k∈[K]

yk log
(
1 + εK

µ

)
≤ εKL

µ
.

The first inequality above follows from the bound ‖p− ˜̃p‖∞ ≤ ε, and the second from the fact
that ˜̃pk ≥ µ

K
for all k ∈ [K], and the third from log(1 + a) ≤ a for all a ∈ R+ and ‖y‖1 ≤ L.

Thus, setting ε = µ
KLn

ensures that the additional loss is at most 1/n with high probability,
as required.

10.8 Chapter Notes

This chapter is based on Foster et al. (2018b).
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Chapter 11

Contextual Bandits

In this chapter we develop adaptive learning guarantees for the contextual bandit setting.
The contextual bandit setting is a sequential decision making model that generalizes the
online supervised learning to accommodate partial feedback, and has been successfully applied
in content recommendation and beyond (Li et al., 2010; Agarwal et al., 2016; Tewari and
Murphy, 2017; Greenewald et al., 2017).

We introduce a new family of margin-based regret guarantees for adversarial contextual
bandit learning. The new margin bound serves as a generic contextual bandit analogue of the
classical margin bound from statistical learning. This result is based on multiclass surrogate
losses, combined with the minimax analysis techniques for adaptive online learning developed
in Part II. Using the ramp loss, we derive a generic margin-based regret bound in terms
of the sequential metric entropy for a benchmark class of real-valued regression functions.
The result applies to large nonparametric classes, improving on the best known results for
Lipschitz contextual bandits (Cesa-Bianchi et al., 2017) and, as a special case, generalizes the
dimension-independent Banditron regret bound (Kakade et al., 2008) to arbitrary linear
classes with smooth norms. Under realizability assumptions our results also yield classical
regret bounds.

On the algorithmic side, we use the hinge loss to derive an efficient algorithm with a
√
dn-type

mistake bound against benchmark policies induced by d-dimensional regression functions.
This provides the first hinge loss-based solution to the open problem of Abernethy and Rakhlin
(2009). With an additional i.i.d. assumption, we give a simple oracle-efficient algorithm whose
regret matches our generic metric entropy-based bound for sufficiently complex nonparametric
classes.

11.1 Background

Surrogate loss functions are ubiquitous in supervised learning (cf. Zhang (2004); Bartlett
et al. (2006); Schapire and Freund (2012)). Computationally, they are used to replace
NP-hard optimization problems with computationally tractable ones, e.g., the hinge loss
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makes binary classification amenable to convex programming techniques. Statistically, they
also enable sharper generalization analysis for models including boosting, SVMs and neural
networks (Schapire and Freund, 2012; Anthony and Bartlett, 2009), for example by replacing
dependence on dimension in VC-type bounds with distribution-dependent quantities.

In this chapter, we use surrogate loss functions to derive a new family of margin-based
algorithms and regret bounds for contextual bandits. Curiously, surrogate losses have seen
limited use in partial information settings (some exceptions are discussed below). This chapter
demonstrates that these desirable computational and statistical properties indeed extend to
contextual bandits.

In the first part of the chapter we focus on statistical issues, namely whether any algorithm
can achieve a generalization of the classical margin bound from statistical learning (Boucheron
et al., 2005) in the adversarial contextual bandit setting. Our aim here is to introduce a
generic margin-based guarantees, in analogy with statistical and online learning, and our
results provide an information-theoretic benchmark for future algorithm designers. We
consider benchmark policies induced by a class F of real-valued regression functions, and
the achievability results we present depend on the complexity of F . As one consequence,
we show that Õ(n

d
d+1 ) regret is achievable for Lipschitz contextual bandits in d-dimensional

metric spaces, improving on a recent result of Cesa-Bianchi et al. (2017), and that an
Õ(n2/3) mistake bound is achievable for bandit multiclass prediction in smooth Banach spaces
(extending Kakade et al. (2008)).

Technically, to provide an analogue of the classical margin theory, we must overcome several
challenges. First, since we operate in the online adversarial setting, there is no generic
algorithmic counterpart to empirical risk minimization that we can use to analyze statistical
behavior of arbitrary classes. Instead, we build on the non-constructive adaptive minimax
analysis developed in Part II, specifically Chapter 6. Since we work in the contextual bandit
setting, we must extend these arguments to incorporate partial information.

In the second part of the chapter, we focus on computational issues and derive two new
algorithms using the hinge loss as a convex surrogate. The first algorithm, Hinge-LMC, prov-
ably runs in polynomial time and achieves a

√
dn-type mistake bound against d-dimensional

benchmark regressors with suitable convexity properties. Hinge-LMC is the first efficient
algorithm with

√
dn-mistake bound for bandit multiclass prediction using a surrogate loss

without curvature, and so it provides a new resolution to the open problem of Abernethy
and Rakhlin (2009). This algorithm is based on the exponential weights update, along with
Langevin Monte Carlo for efficient sampling and a careful action selection scheme to ensure
low regret. The second algorithm is much simpler: we show that, in the stochastic setting,
Follow-The-Leader with appropriate smoothing provides an algorithmic counterpart to the
aforementioned information-theoretic results provided the class F is sufficiently large (in
terms of metric entropy growth rate). We caution that compared to preceding chapters,
the algorithmic techniques we employ are somewhat ad-hoc and do not exactly fall into
the Burkholder framework. Understanding the extent to which the Burkholder method can
generically be used to design contextual bandit algorithms is an important direction for future
research.
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11.1.1 Preliminaries

We work in the contextual bandit protocol (Protocol 4), with loss space L = [0, 1]A. Recall
that the goal is to design algorithms that achieve low regret against a class Π ⊂ (X → A) of
benchmark policies:

Regn(n,Π) ,
n∑
t=1

E[`t(at)]− inf
π∈Π

n∑
t=1

E[`t(π(xt))].

In this chapter, we always identify Π with a class of vector-valued regression functions
F ⊂ (X → RK

=0), where we define RK
=0 , {s ∈ RK : ∑a sa = 0}. For such functions, we

use the notation f(x) ∈ RK to denote the vector-valued output and f(x)a to denote the ath

component. Note that we are assuming ∑a f(x)a = 0, which is a natural generalization of
the standard regression function formulation of binary classification (Bartlett et al., 2006)
and appears in e.g. Pires et al. (2013). We define B , supf∈F supx∈X‖f(x)‖∞ to be the
maximum value predicted by any regressor.

Our algorithms use importance weighting to form unbiased loss estimates. If at round t, the
algorithm chooses action at by sampling from a distribution pt ∈ ∆([K]), the loss estimate is
defined as ˆ̀

t(a) , `t(at)1{at = a}/pt(a). Given pt, we also define a smoothed distribution as
pµt , (1−Kµ)pt + µ for some parameter µ ∈ [0, 1/K].

We introduce two surrogate loss functions, the ramp loss and the hinge loss, whose scalar ver-
sions are defined as φγ(s) , min(max(1 +s/γ, 0), 1) and ψγ(s) , max(1 +s/γ, 0) respectively.
For s ∈ RK , φγ(s) and ψγ(s) are defined coordinate-wise.

We start with a simple lemma, demonstrating how φγ, ψγ act as surrogates for cost-sensitive
multiclass losses.

Lemma 31 (Surrogate Loss Translation). For s ∈ RK
=0, define πramp(s) ∈ ∆(A) by

πramp(s)a ∝ φγ(sa) and define πhinge(s) ∈ ∆(A) by πhinge(s)a ∝ ψγ(sa) analogously. For
any vector ` ∈ RK

+ , we have

〈πramp(s), `〉 ≤ 〈`, φγ(s)〉 ≤
∑
a∈A

`(a)1{sa ≥ −γ}, and 〈πhinge(s), `〉 ≤ K−1〈`, ψγ(s)〉.

Based on this lemma, it will be convenient to define Lγn(f) , ∑n
t=1

∑
a∈A `t(a)1{f(xt)a ≥ −γ},

which is the margin-based cumulative loss for the regressor f . Lγn should be seen as a cost-
sensitive multiclass analogue of the classical margin loss from statistical learning (Boucheron
et al., 2005).

11.2 Minimax Achievability of Margin Bounds

This section provides generic margin-based regret bounds for contextual bandits in terms
of the sequential metric entropy of the regressor class F . Notably, our general techniques
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apply when the ramp loss is used as a surrogate, and so they yield the main result of the
section—a margin-based regret guarantee—as a special case.

To motivate our approach, consider a well-known reduction from bandits to full information
online learning: If a full information algorithm achieves a regret bound in terms of the so-called
local norms ∑t〈pt, `2

t 〉, then running the full information algorithm on importance-weighted
losses ˆ̀

t(a) yields an expected regret bound for the bandit setting. For example, Exp4 (Auer
et al., 2002b) exploits this observation for the case when Π is finite, using Hedge (Freund
and Schapire, 1997) as the full information algorithm, and obtaining a deterministic regret
bound of

Regn(n,Π) ≤ η

2

n∑
t=1

E
π∼pt

〈
π(xt), ˆ̀

t

〉2
+ log(|Π|)

η
, (11.1)

where η > 0 is the learning rate and pt is the distribution over policies in Π (which induces
an action distribution for round t). Evaluating conditional expectations and optimizing the
learning rate η yields a regret bound of O(

√
Kn log(|Π|)), which is optimal for contextual

bandits with a finite policy class.

To use this reduction beyond the finite class case and with surrogate losses we face two
challenges:

1. Infinite Classes. The natural approach of using a pointwise (or sup-norm) cover of
the function class F is insufficient—not only because there are classes that have infinite
pointwise covers yet are online-learnable, but also because it yields sub-optimal rates even
when a finite pointwise cover is available. Instead, we directly establish existence of a
full-information algorithm for large, potentially nonparametric classes that has 1) strong
adaptivity to loss scaling similar to (11.1) and 2) regret scaling with the sequential covering
number for F , which is the correct generalization of the empirical covering number in
statistical learning to the adversarial online setting. This is achieved by using the tools of
Part II to establish achievability.

2. Variance Control. With surrogate losses, controlling the variance term Eπ〈π(xt), `t〉2 in
the reduction from bandit to full information is more challenging, since the surrogate loss
of a policy depends on the scale of the underlying regressor, not just the action it selects.
To address this, we develop a new sampling scheme tailored to scale-sensitive losses.

Full-Information Regret Bound. We consider the following full information protocol,
which in the sequel will be instantiated via reduction from contextual bandits. Let the context
space X and A be fixed as in Section 11.1.1, and consider a function class G ⊂ (X → S),
where S ⊆ RK

+ . The reader may think of G as representing φγ ◦F or ψγ ◦F , i.e. the surrogate
loss composed with the regressor class, so that S (which is not necessarily convex) represents
the image of the surrogate loss over F .

The online learning protocol is: For time t = 1, . . . , n, (1) the learner picks a distribution
pt ∈ ∆(S), (2) the adversary picks a loss vector `t ∈ L ⊂ RK

+ , (3) the learner samples outcome
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st ∼ pt and experiences loss 〈st, `t〉. Regret against the benchmark class G is given by
n∑
t=1

E
st∼pt
〈st, `t〉 − inf

g∈G

n∑
t=1
〈g(xt), `t〉.

Similar to Chapter 10, we require a multi-output generalization of the sequential covering
numbers described in Chapter 6 because we work in the multiclass setting.
Definition 17. For a function class G : X → RK and X -valued tree x of length n, the
L∞/`∞ sequential covering number for G on x at scale ε, denoted by N∞,∞(ε,G,x), is the
cardinality of the smallest set V of RK-valued trees for which

∀g ∈ G ∀ε ∈ {±1}n ∃v ∈ V s.t. max
t∈[n]
‖g(xt(ε))− vt(ε)‖∞ ≤ ε.1 (11.2)

Define N∞,∞(ε,G, n) = supx:length(x)=nN∞,∞(ε,G,x).

We refer to logN∞,∞ as the sequential metric entropy. Note that in the binary case, for
learning unit `2 norm linear functions in d dimensions, the pointwise metric entropy grows as
O(d log(1/ε)), whereas the sequential metric entropy is O(d log(1/ε) ∧ ε−2 log(d)), leading to
improved rates in high dimension.

With this definition, we can now state our main theorem for full information.
Theorem 40. Assume sup`∈L‖`‖1 ≤ R2 and sups∈S‖s‖∞ ≤ B. Fix any constants η ∈ (0, 1],
λ > 0, and β > α > 0. Then there exists an algorithm with the following deterministic regret
guarantee:
n∑
t=1

E
st∼pt
〈st, `t〉 − inf

g∈G

n∑
t=1
〈g(xt), `t〉 ≤

2η
RB

n∑
t=1

E
st∼pt
〈st, `t〉2 + 4RB

η
logN∞,∞(β/2,G, n) + 3e2α

n∑
t=1
‖`t‖1

+ 12e
(
λ

4R

n∑
t=1
‖`t‖21 + R

λ

)∫ β

α

√
logN∞,∞(ε,G, n)dε.

Observe that the bound involves the variance terms/local norms Est∼pt〈st, `t〉
2, and has a

very mild explicit dependence on the loss range R; this can be verified by optimizing over η
and λ. This adaptivity to the loss range is crucial for our bandit reduction. Further observe
that the bound contains a Dudley-type entropy integral, which is essential for obtaining sharp
rates for complex nonparametric classes. The proof of Theorem 40 follows similar reasoning
to the achievability results in Chapter 6, particularly the Online PAC-Bayes theorem. It
is substantially more technical because a) the regret bound depends on the learner’s own
predictions and so does not fall into the framework of Chapter 6 and b) this is achieves while
being (mostly) adaptive to the loss range, rather than requiring an a-priori bound.3

1Sequential coverings for Lp/`q can be defined similarly, but do not appear in the present chapter.
2Measuring loss in `1 may seem restrictive, but it is natural when working with the 1-sparse importance-

weighted losses, and it enables us to cover the output space in `∞ norm.
3After optimizing the parameters λ and η in Theorem 40, the parameter R only enters a single term.
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Bandit Reduction and Variance Control To lift Theorem 40 to the contextual bandit
setting with the ramp loss we use the following reduction: First, initialize the full information
algorithm whose existence is guaranteed by Theorem 40 with G = φγ ◦ F . For each round t,
receive xt, and define Pt(a) = Est∼pt

st(a)∑
a′∈[K] st(a

′) where pt is the full information algorithm’s
distribution. Then sample at ∼ P µ

t , observe `t(at), and pass the importance-weighted loss
ˆ̀
t(a) to the full information algorithm. For the hinge loss we use the same strategy, but with
G = ψγ ◦ F .

The following lemma shows that this strategy leads to sufficiently small variance in the
loss estimates. The definition of the action distribution P µ

t (a) in terms of the real-valued
predictions is crucial here.

Lemma 32. Define a filtration Jt = σ((x1, `1, a1), . . . , (xt−1, `t−1, at−1), xt, `t). Then for any
µ ∈ [0, 1/K] the importance weighting strategy above guarantees

E
at∼Pµt

[
E

st∼pt

〈
st, ˆ̀

t

〉2
| Jt

]
≤


K, for S ⊂ ∆(A).
K2, for S = φγ ◦ F .(
1 + B

γ

)2
K2, for S = ψγ ◦ F .

Theorem 44 and Lemma 32 together imply our central theorem: a chaining-based mar-
gin bound for contextual bandits, generalizing classical results in statistical learning
(cf. (Boucheron et al., 2005)).
Theorem 41 (Contextual bandit margin bound). For any fixed constants β > α > 0,
smoothing parameter µ ∈ (0, 1) and margin loss parameter γ > 0 there exists an adversarial
contextual bandit strategy with expected regret against the γ-margin benchmark bounded as

E
[
n∑
t=1

`t(at)
]
≤ inf

f∈F
E[Lγn(f)] + 4

√
2K2n logN∞,∞(β/2,F , n) + µKn (11.3)

+ 8
µ

logN∞,∞(β/2,F , n) + 1
γ

(
3e2αKn+ 12e

√
Kn

µ

∫ β

α

√
logN∞,∞(ε,F , n)dε

)
.

We derive an analogous bound based on the hinge loss, but since this is strictly weaker we
defer the result to Section 11.2.

Before showing the implications of Theorem 41 for specific classes F we state a coarse upper
bound in terms of the growth rate for the sequential metric entropy.

Proposition 19. Suppose that F has sequential metric entropy growth logN∞,∞(ε,F , n) ∝
ε−p for some p > 0 (nonparametric case), or that logN∞,∞(ε,F , n) ∝ d log(1/ε) (parametric
case). Then there exists a contextual bandit strategy with the following regret guarantee:

E
[
n∑
t=1

`t(at)
]
≤ inf

f∈F
E[Lγn(f)] +


O(K

√
dn log(Kn/γ)), parametric case.

Õ((Kn)
p+2
p+4γ−

2p
p+4 ), nonparametric w/ p ≤ 2.

Õ((Kn)
p
p+1γ−

p
p+1 ), nonparametric w/ p ≥ 2.

(11.4)
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Figure 11.1: Regret bound exponent
as a function of (sequential) metric
entropy. The cross marks the point
p = 2 where the exponent from Theo-
rem 41 changes growth rate. “Full in-
formation” refers to the optimal rate
of n

1
2∨( p−1

p
) for the same setting under

full information feedback (Rakhlin
et al., 2014). “Square loss” refers to
the optimal rate of n

p+1
p+2 for Lipschitz

contextual bandits over metric spaces
of dimension p, which have sequential
metric entropy ε−p, under square loss
realizability (Slivkins, 2011).

Proposition 19 recovers the parametric rate of
√
dn seen with e.g., LinUCB (Chu et al.,

2011) but is most interesting for complex classes. The rate exhibits a phase change between
the “moderate complexity” regime of p ∈ (0, 2] and the “high complexity” regime of p ≥ 2.
This is visualized in Figure 11.1.

Remark 4. Under i.i.d. losses and hinge/ramp loss realizability, the standard tools of
classification calibration (Bartlett et al., 2006) can be used to deduce a proper policy regret
bound from (11.3). However, these realizability assumptions are somewhat non-standard, and
moreover if one imposes the stronger assumption of a hard margin it is possible to derive
improved rates (Daniely and Helbertal, 2013).
Remark 5. Compared to classical margin bounds which typically hold for all values of γ
simultaneously, Theorem 41 requires that γ is chosen in advance. Learning the best value of
γ online appears challenging.

We now instantiate our results for concrete classes of interest.

Example 24 (Finite classes). In the finite class case there is an algorithm with
O
(
K
√
n log|F|

)
margin regret. When Π ⊂ (X → A) is a finite policy class, our reduc-

tion to Theorem 40 yields the optimal O
(√

Kn log|Π|
)

policy regret, hinting at the optimality
of our approach.
Example 25 (Lipschitz CB). The class of all bounded Lipschitz functions over [0, 1]p admits
a pointwise cover with metric entropy Õ(ε−p), immediately yielding a sequential cover. Propo-
sition 19 thus implies an Õ(n

p+2
p+4∨

p
p+1 ) regret bound. Since our proof goes through Lemma 31,

it also yields a policy regret bound against the πramp(·) policy class. Therefore, the result is
directly comparable to the Õ(n

p+1
p+2 ) regret bound of Cesa-Bianchi et al. (2017) for Lipschitz

contextual bandits (applied to the induced πramp policy class). Our bound achieves a smaller
exponent for all values of p (see Figure 11.1).

Learnability in the full information online learning setting is known to be characterized
entirely by the sequential Rademacher complexity of the hypothesis class, and tight bounds
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on the sequential Rademacher complexity are known for standard classes including linear
predictors, decision trees, and neural networks (Rakhlin et al., 2014). The next example,
a corollary of Theorem 41, bounds contextual bandit margin regret in terms of sequential
Rademacher complexity.

For any scalar-valued function class G ⊆ (X → R), define the sequential Rademacher com-
plexity via

Rseq(G) = sup
x

E
ε

sup
g∈G

n∑
t=1

εtg(xt(ε)).

Example 26. Let F|a := {x 7→ f(x)a | f ∈ F} be the scalar restriction of F to output coordi-
nate a and suppose that maxa∈[K]Rseq(F|a) ≥ 1 and B ≤ 1.4 Then there exists an adversarial
contextual bandit algorithm with margin regret bound Õ

(
maxaK(R(F|a)/γ)2/3n1/3

)
.

This example implies that for margin-based contextual bandits, full information learnability
is equivalent to bandit learnability. In particular, since the optimal regret in full information
is Ω(maxaRseq(F|a, )), it further shows that the price of bandit information is at most
Õ
(
maxaK(n/Rseq(F|a))1/3

)
. Note however that while this bound is fairly user-friendly, the

rates it obtains by plugging in the sequential metric entropy upper bound on sequential
Rademacher complexity (Rakhlin et al., 2010) are sub-optimal relative to Proposition 19
except when p = 2. As a point of comparison, BISTRO (Rakhlin and Sridharan, 2016a) has
an O(

√
KnRseq(Π)) regret bound, which involves the complexity of the policy class (rather

than the regressor class) and a worse n dependence than our bound, but our bound (in terms
of F) applies only to the margin regret.

We now instantiate Example 26 with linear classes. The next example generalizes the O(n2/3)
dimension-independent surrogate regret bound of the Banditron algorithm (Kakade et al.,
2008) from Euclidean geometry to arbitrary uniformly convex Banach spaces (and more
generally to Banach spaces of cotype 2), essentially the largest class of linear predictors for
which online learning is possible (Srebro et al., 2011). The result also generalizes Banditron
from bandit multiclass to general contextual bandits, and strengthens it from hinge loss to
ramp loss. Note that many subsequent works (Abernethy and Rakhlin, 2009; Beygelzimer
et al., 2017; Foster et al., 2018b) have obtained dimension-dependent O(

√
dn) bounds for

bandit multiclass prediction, as we will in the next section, but, to our knowledge, none
have explored dimension-independent O(n2/3)-type rates, which are more appropriate for
high-dimensional settings.

Example 27. Take X to the unit ball in a Banach space (B, ‖·‖), and let F be the class
of regressors induced by stacking K − 15 linear predictors each in the unit ball of the dual
Banach space (B?, ‖·‖?). Suppose that ‖·‖ has martingale type 2 (Pisier, 1975), which means
there exists Ψ : B→ R such that 1

2‖x‖
2 ≤ Ψ(x) and Ψ is β-smooth with respect to ‖·‖. Then

there exists a contextual bandit strategy with margin regret O(K(n/γ)2/3). Norms that satisfy
the smoothness property with dimension-independent or logarithmic constants include `p for
all p ≥ 2, Schatten Sp norms for p ≥ 2 (including the spectral norm), and (2, p) group norms
for p ≥ 2 (Kakade et al., 2009b, 2012).

4This restriction serves only to simplify calculations and can be relaxed.
5Only K − 1 predictors are needed due to the sum-to-zero constraint of RK=0.
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Appealing to existing sequential Rademacher complexity bounds, we derive regret bounds
for a few more well-known function classes. In the interest of space, we state these bounds
informally and refer the reader to Rakhlin et al. (2014) for quantitative bounds on the
sequential Rademacher complexity.

Example 28. Suppose each F|a consists of a class of neural networks with weights in each
layer bounded in the (1,∞) group norm, or consists of a class of bounded depth decision
trees with a finite set of decision functions. Then there exists a strategy with margin regret
Õ(K(n/γ)2/3).
As our last example, we consider `p spaces for p < 2. These spaces fail to satisfy martingale
type 2 in a dimension-independent fashion, but they do satisfy martingale type p without
dimension dependence, and so have sequential metric entropy of order ε−

p
p−1 (Rakhlin and

Sridharan, 2017). On the other hand, in Rd the `p spaces also admit a pointwise cover with
metric entropy O(d log(1/ε)), leading to the following dichotomy.

Example 29. Consider the setting of Example 27, with (B, ‖·‖) = (Rd, ‖·‖p) for p ≤ 2. Then
there exists a contextual bandit strategy with margin regret Õ(K(n/γ)

p
2p−1 ∧K

√
dn log(Kn/γ)).

11.3 Efficient Algorithms

This section contains two new algorithms for contextual bandits, both using the hinge loss
ψγ. The first algorithm, Hinge-LMC, focuses on the parametric setting; it is based on
a continuous version of exponential weights using a log-concave sampler, and is described
in Section 11.3.1. The second, SmoothFTL, is simply Follow-The-Leader with uniform
smoothing, described in Section 11.3.2. SmoothFTL applies to the stochastic contextual
bandit setting with classes that have “high complexity” in the sense of Proposition 19.

Compared to the achievability results in this chapter, the algorithms presented in this section
do not immediately arise from the equivalence framework of Part II. Whether the Burkholder
method can be extended to generically solve contextual bandits and related problems with
partial information remains an important open question.

11.3.1 Hinge-LMC

For this section, we identify F with a compact convex set Θ ⊂ Rd, using the notation
f(x; θ) ∈ RK

=0 to describe the parametrized function. We assume that ψγ(f(x; θ)a) is convex
in θ for each (x, a) pair, supx,θ ‖f(x; θ)‖∞ ≤ B, f(x; ·)a is L-Lipschitz as a function of θ with
respect to the `2 norm, and that Θ contains the centered Euclidean ball of radius 1 and is
contained within a Euclidean ball of radius R. These assumptions are all satisfied when F is
a class of linear functions, under appropriate boundedness.

The pseudocode for the algorithm, Hinge-LMC, is displayed in Algorithm 12, with a sampling
subroutine in Algorithm 13. The settings for all parameters are given in Section 11.6.1. The
main idea is to run a continuous variant of exponential weights (Auer et al., 2002b) on the
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Algorithm 12 Hinge-LMC
Input: Class Θ, learning rate η, rounds T ,
margin parameter γ.
Define w0(θ) = 1 for all θ ∈ Θ.
for t = 1, . . . , n do

Receive xt
// See Section 11.6.1 for LMC

params.
θt ← LMC(ηwt−1).
Set pt(·; θt) ∝ ψγ(f(xt; θt))
Set pµt (·; θt) = (1−Kµ)pt + µ.
Play at ∼ pµt (·; θt), observe `t(at).
// Geometric resampling.
for m = 1, . . . ,M do

θ̃t ← LMC(ηwt−1).
Sample ãt ∼ pµt (·; θ̃t), if ãt = at, break

end for
Set mt = m, and ˜̀

t(a) = `t(at)·mt1{at =
a}

Update wt(θ) ← wt−1(θ) +
〈˜̀t, ψγ(f(xt; θ))〉
end for

Algorithm 13 Langevin Monte Carlo (LMC)
Input: Function F , parameters m,u, λ,N, α.
Set θ̃0 ← 0 ∈ Rd

for k = 1, . . . , N do
Draw z1, . . . , zm

iid∼ N (0, u2Id) and define

F̃k(θ) = 1
m

∑m
i=1 F (θ + zi) + λ

2‖θ‖
2
2

Draw ξk ∼ N (0, Id) and update

θ̃k ← PΘ

(
θ̃k−1 −

α

2∇F̃k(θ̃k−1) +
√
αξk

)
.

end for
Return θ̃N .

surrogate hinge loss. At round t, we define the exponential weights distribution via its density
(w.r.t. the Lebesgue measure over Θ)

Pt(θ) ∝ exp(−ηwt−1(θ)), wt−1(θ) =
t−1∑
s=1
〈˜̀s, ψγ(f(xs; θ))〉,

where η is a learning rate and ˜̀
s is an estimate of the loss vector. At a high level, at

each iteration the algorithm generates a sample θt ∼ Pt, then samples the action at from
the induced policy distribution pt(·; θ) = πhinge(f(xt; θt)) ∝ ψγ(f(xt; θt)) ∈ ∆(A). The
algorithm then plays at, observes the loss `t(at), and constructs a loss vector estimate
˜̀
t = mt ·`t(a)1{a = at}, where mt is an approximation to the importance weight computed by

repeatedly sampling from Pt. This vector ˜̀
t is passed to the exponential weights subroutine

to define the distribution at the next round. To generate samples θt ∼ Pt we use Projected
Langevin Monte Carlo (LMC).

The algorithm has many important subtleties. Briefly, the analysis for Projected LMC that
we use, due to Bubeck et al. (2018), requires a smooth potential function, and we use the
randomized technique of Duchi et al. (2012) to smooth the hinge loss by convolving with a
gaussian density (in expectation). Then, since the gradients of this smooth function cannot
be computed in closed form, we use a coupling argument to show that the iterates on a
sampled approximation track the ideal iterates. Here, the `2 regularization added to the
function F̃k(θ) defined in Algorithm 13 plays an important role. Finally, since we lack direct
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access to the sampling distribution, we use the geometric resampling technique of Neu and
Bartók (2013) to approximate the importance weight by repeated sampling. At all stages
it is important to show that the large scaling on the loss estimates induced by importance
weighting does not degrade computational performance. All of the components are analyzed
in detail in Section 11.6.1.

Here, we state the main guarantee and its consequences. A more complete theorem statement,
with exact parameter specifications and the precise running time is provided in Section 11.6.1
as Theorem 46.

Theorem 42 (Informal). Under the assumptions of Section 11.3.1, Hinge-LMC with
appropriate parameter settings runs in time poly(n, d,B,K, 1

γ
, R, L) and guarantees

E
n∑
t=1

`t(at) ≤ inf
θ∈Θ

1
K

E
n∑
t=1
〈`t, ψγ(f(xt; θ))〉+ Õ

(
B

γ

√
dn

)
.

Since bandit multiclass prediction is a special case of contextual bandits, Theorem 42
immediately implies a

√
dn-mistake bound for this setting.

Corollary 13 (Bandit multiclass). In the bandit multiclass setting, Algorithm 12 enjoys a
mistake bound of Õ((B/γ)

√
dn) against the multiclass γ-hinge loss and runs in polynomial

time.

Additionally, under a realizability condition for the hinge loss, we obtain a standard regret
bound. For simplicity in defining the condition, assume that for every (x, `) pair, ` is a
random variable with conditional mean ¯̀ (chosen by the adversary) and ¯̀ has a unique action
with minimal loss.

Corollary 14 (Realizable bound). In addition to the conditions above, assume that there
exists θ? ∈ Θ such that for every (x, `) pair and for all a ∈ A, we have f(x; θ?)a = Kγ1{¯̀(a) ≤
mina′ ¯̀(a′)} − γ. Then Hinge-LMC runs in polynomial time and guarantees

n∑
t=1

E¯̀
t(at) ≤

n∑
t=1

Emin
a

¯̀(a) + Õ

(
B

γ

√
dn

)
.

A few comments are in order:
1. On a technical level, apart from passing to the hinge surrogate loss to obtain a tractable

log-concave sampling problem, the key insight is that the hinge loss also lets us controls
the local norm term in the exponential weights regret bound (the first term on the right
hand side of (11.1)). For this step, it is crucial that we sample from the induced policy
distributions πhinge(·) rather than the more natural argmax policy arg maxa f(x; θ)a,
which does not provide suitable control. Our technique therefore seems specialized to
surrogates that can be expressed as an inner product between the loss vector and (a
transformation of) the prediction, which cannot be done for many loss functions used
in bandit multiclass prediction.

2. The use of LMC for sampling is not strictly necessary. Other log-concave samplers
do exist for non-smooth potentials (Lovász and Vempala, 2007), which will remove
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the parameters m,u, λ, significantly simplify the algorithm, and even lead to a better
run-time guarantee using current theory. On the other hand, we prefer to use LMC due
to its success in Bayesian inference and deep learning, and its connections to incremental
optimization methods for supervised learning. LMC, moreso than say Hit-and-Run
(Lovász and Vempala, 2007), can easily be adapted to work quickly (in practice) when
data arrives online. Furthermore, while the runtime for LMC is quite large in theory
(Section 11.6.1), the theoretical memory usage scales only linearly with the memory
required to store a single context. We are hopeful that the LMC approach will lead
to a practically useful contextual bandit algorithm and plan to explore this direction
further.

3. As mentioned above, while the algorithm is guaranteed to run in polynomial time, the
dependence on n and d that we obtain is quite poor. In part, this inefficiency stems
from the mixing-time analysis for Projected LMC (Bubeck et al., 2018). More recent
results in slightly different settings (Raginsky et al., 2017; Dalalyan and Karagulyan,
2017; Cheng et al., 2018) suggest that it may be possible to substantially improve
this analysis and even extend to non-convex settings. Similarly, we conjecture that
Projected LMC can be analyzed without smoothness.

4. Corollary 13 provides a new solution to the open problem of Abernethy and Rakhlin
(2009). In fact, this result is the first efficient

√
dn-type regret bound against a hinge

loss benchmark, although it is slightly different from the multiclass hinge loss variant
used by Kakade et al. (2008) in their n2/3-regret Banditron algorithm (which was
the motivation behind the open problem). All prior

√
dn-regret algorithms (Hazan and

Kale, 2011; Beygelzimer et al., 2017; Foster et al., 2018b) use losses with curvature
such as the multiclass logistic loss or the squared hinge loss.

5. In Corollary 14, regret is measured relative to the policy that chooses the best action (in
expectation) on every round. As in prior results (Abbasi-Yadkori et al., 2011; Agarwal
et al., 2012), this is possible because the realizability condition ensures that this policy
is in our class. Note that here, a requirement for realizability is that B ≥ Kγ, and
hence the dependence on K is implicit and in fact slightly worse than the optimal rate
(Chu et al., 2011).

6. For Corollary 14, the best points of comparisons are methods based on square-loss
realizability (Agarwal et al., 2012; Foster et al., 2018a), although our condition is
different. We impose stronger assumptions on the regressor class but obtain better
regret guarantees than those in Foster et al. (2018a), which is the only other efficient
approach at a comparable level of generality. Our assumptions are somewhat weaker
than for LinUCB and variants (Chu et al., 2011; Abbasi-Yadkori et al., 2011) that are
specialized to the `2/`2 geometry,6 but these methods have slightly better guarantees
for linear classes (again under square loss realizability).

To summarize, Hinge-LMC is the first efficient
√
dn-regret algorithm for bandit multiclass

prediction using the hinge loss. It also represents a new approach to adversarial contextual
bandits, in which we obtain

√
dn policy regret under hinge-based realizability. Finally, while

6In abstract linear setting we take F to be the set of linear functions in the ball for some norm ‖·‖ and
contexts to be bounded in the dual norm ‖·‖?. The runtime of Hinge-LMC will degrade (polynomially)
with the ratio ‖θ‖/‖θ‖2, but the regret bound is the same for any such norm pair.
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we lose the theoretical guarantees, the algorithm easily extends to non-convex classes, which
we expect to be practically effective.

11.3.2 SmoothFTL

A drawback of Hinge-LMC is that it only applies in the parametric regime. We now
introduce an efficient (in terms of queries to a hinge loss minimization oracle) algorithm that
enjoys a regret bound similar to Theorem 41, but under the additional assumption that data
is stochastic. Precisely, we work in the same model as Section 11.1.1, but where the pairs
{(xt, `t)}nt=1 are drawn i.i.d. from some joint distribution D over X × RK

+ . For simplicity, we
assume B = 1.

The algorithm we analyze is simply Follow-The-Leader with uniform smoothing and epoching,
which we refer to as SmoothFTL. Here we return to the abstract setting with regression
class F . We use an epoch schedule where the mth epoch lasts for nm = 2m rounds (starting
with m = 0). At the beginning of the mth epoch, we compute the empirical importance
weighted hinge-loss minimizer f̂m−1 using only the data from the previous epoch. That is, we
set

f̂m−1 = arg min
f∈F

2nm−1−1∑
τ=nm−1

〈ˆ̀τ , ψγ(f(xτ ))〉.

Then, for each round t in the mth epoch, we sample at according to pt = (1 −
Kµ)πhinge(f̂m−1(xt)) + µ.

The parameter µ ∈ (0, 1/K] controls smoothing. At the first time t = 1 we simply take p1 to
be uniform.

Theorem 43 (SmoothFTL regret bound). Suppose that F satisfies logN∞,∞(ε,F , n) ∝ ε−p

for some p > 2. Then in the stochastic setting, with µ = K−1n
−1
p+1 , SmoothFTL enjoys the

following expected regret guarantee7

n∑
t=1

E`t(at) ≤ inf
f∈F

n

K
E〈`, ψγ(f(x))〉+ Õ

(
(n/γ)

p
p+1
)
.

This provides an algorithmic counterpart to Proposition 19 in the p ≥ 2 regime. The
algorithm is quite similar to Epoch-Greedy (Langford and Zhang, 2008), and the main
contribution here is to provide a careful analysis for large function classes. We leave obtaining
an oracle-efficient algorithm that matches Proposition 19 in the regime p ∈ (0, 2) as an open
problem.

Note that a similar bound can be obtained for the ramp loss by simply replacing the hinge
loss ERM with that for the ramp loss. We analyze the hinge loss version because standard
(e.g. linear) classes admit efficient hinge loss minimization oracles. Interestingly, the bound

7This result is stated in terms of the sequential cover N∞,∞ to avoid additional definitions, but can easily
be improved to depend classical (worst-case) covering number seen in statistical learning.

212



in Theorem 43 actually improves on Proposition 19, in that it is independent of K. This is
due to the scaling of the hinge loss in Lemma 31.

In Section 11.6.7, we extend the analysis to the stochastic Lipschitz contextual bandit setting.
Here, instead of measuring regret against the benchmark ψγ ◦ F we compare to the class
of all 1-Lipschitz functions from X to ∆(A), where X is some metric space of bounded
covering dimension. We show that SmoothFTL achieves n

p
p+1 regret against Lipschitz

policies over a p-dimensional context space with finite action space. This improves on the
n
p+1
p+2 bound of Cesa-Bianchi et al. (2017), as in Example 25, yet the best available lower

bound is n
p−1
p (Hazan and Megiddo, 2007). Closing this gap remains an intriguing open

problem.

11.4 Discussion

This chapter initiates a study of the utility of surrogate losses in contextual bandit learning.
We obtain new margin-based regret bounds in terms of sequential complexity notions on
the benchmark class, improving on the best known rates for Lipschitz contextual bandits
and providing dimension-independent bounds for linear classes. On the algorithmic side,
we provide the first solution to the open problem of Abernethy and Rakhlin (2009) with a
loss without curvature, and we also show that Follow-the-Leader with uniform smoothing
performs well in nonparametric settings.

Yet, several open problems remain. First, our bounds are likely suboptimal in the dependence
on K. Next, while Proposition 19 recovers all upper bounds we are aware of (e.g., the O(T 2/3)
dimension-independent bound of Banditron), a matching lower bound is not available,
and resolving the optimality of Proposition 19 in all regimes is an intriguing open problem.
Another important problem is to adapt to the margin parameter—this is easy in the classical
statistical learning setting via penalized risk minimization, but partial information makes
adapting such an approach nontrivial.

11.5 Detailed Proofs for Minimax Results

11.5.1 Calibration Lemmas

Proof of Lemma 31. We start with the ramp loss. First since s ∈ RK
=0, we know that the

normalization term in πramp(s) is ∑
a∈A

φγ(sa) ≥ 1,

from which the first inequality follows. The second inequality follows from the fact that
sa ≤ −γ implies that πramp(s)a = 0, along with the trivial fact that πramp(s)a ≤ 1.
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The hinge loss claim is also straightforward, since here the normalization is∑
a∈A

ψγ(sa) =
∑
a∈A

max{1 + sa/γ, 0} ≥
∑
a

1 + sa
γ
≥ K.

Lemma 33 (Hinge loss realizability). Let ` ∈ RK
+ and let a? = arg mina∈A `a. Define s ∈ RK

=0
via sa , Kγ1{a = a?} − γ. Then we have

〈`, ψγ(s)〉 = K〈`, πhinge(s)〉 = K`a? .

Proof. For this particular s, the normalizing constant in the definition of πhinge is∑
a∈A

max
(

1 + Kγ1{a = a?} − γ
γ

, 0
)

= K,

and so the first equality follows. The second equality is also straightforward since the score
for every action except a? is clamped to zero.

Proof of Lemma 32.
For the case when S ⊂ ∆(A), this claim is a well-known property of importance weighting:

E
[

E
st∼pt

〈
st, ˆ̀

t

〉2
| Jt

]
=

∑
a∈[K]

P µ
t (a)Est∼pt `

2
t (a)s2

t (a)
(P µ

t (a))2 ≤
∑
a∈[K]

Est∼pts2
t (a)

P µ
t (a)

≤
∑
a∈[K]

Est∼ptst(a)
P µ
t (a) =

∑
a∈[K]

Pt(a)
(1−Kµ)Pt(a) + µ

.

Here we use Hölder’s inequality twice, using that ‖`‖∞ ≤ 1 and s ∈ ∆(A). Now, since the
function x 7→ 1/(1−Kµ+ µ/x) is concave in x, it follows that∑

a∈[K]

Pt(a)
(1−Kµ)Pt(a) + µ

=
∑
a∈[K]

1
(1−Kµ) + µ/Pt(a)

≤ K
1

(1−Kµ) +Kµ/
∑
a∈[K] Pt(a) = K,

which proves the claim for S ⊂ ∆(A).

We proceed in the same fashion for both the ramp and hinge loss. Recall the definition
P µ
t (a) = (1−Kµ)Est∼pt

st(a)∑
a′∈[K] st(a

′) + µ. We have

E
[

E
st∼pt

〈
st, ˆ̀

t

〉2
| Jt

]
=

∑
a∈[K]

P µ
t (a)Est∼pt `

2
t (a)s2

t (a)
(P µ

t (a))2 =
∑
a∈[K]

Est∼pt `2
t (a)s2

t (a)
P µ
t (a)

≤
∑
a∈[K]

Est∼pt s2
t (a)

P µ
t (a) ≤ max

a∈[K]
max
s∈S

s(a) ·
∑
a∈[K]

Est∼pt st(a)
P µ
t (a)

= max
a∈[K]

max
s∈S

s(a) ·
∑
a∈[K]

Est∼pt st(a)
(1− µK)Est∼pt

st(a)∑
a′∈[K] st(a

′) + µ

≤ K ·
(

max
a∈[K]

max
s∈S

s(a)
)2

·
∑
a∈[K]

Est∼pt
st(a)∑

a′∈[K] st(a
′)

(1−Kµ)Est∼pt
st(a)∑

a′∈[K] st(a
′) + µ

.
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Here we first apply the definition of ˆ̀
t and cancel out one factor of P µ

t in the denomator.
Then we apply Hölder’s inequality, using that st(a) ≥ 0. Expanding the definition P µ

t and
using the upper bound ∑a′∈[K] st(a′) ≤ K maxa maxs st(a), yields the final expression.

Now, let qa , Est∼pt
st(a)∑

a′∈[K] st(a
′) , and apply the concavity argument above. This yields

K2 ·
(

max
a∈[K]

max
s∈S

s(a)
)2

.

For the set S induced by the ramp loss we have maxa∈[K] maxs∈S s(a) ≤ 1, and for the set S
induced by the hinge loss we have maxa∈[K] maxs∈S s(a) ≤ (1 + B

γ
).

11.5.2 Proofs from Section 11.2

Let us start with an intermediate result, which will simplify the proof of Theorem 40.
Theorem 44. Assume ‖`‖1 ≤ 1 for all ` ∈ L8 and sups∈S‖s‖∞ ≤ 1. Further assume that S
and L are compact. Fix any constants η ∈ (0, 1], λ > 0, and β > α > 0. Then there exists an
algorithm with the following deterministic regret guarantee:

n∑
t=1

E
st∼pt
〈s, `t〉 − inf

g∈G

n∑
t=1
〈g(xt), `t〉 ≤ 2η

n∑
t=1

E
st∼pt
〈st, `t〉2 + 4

η
logN∞,∞(β/2,G, n) + 3e2α

n∑
t=1
‖`t‖1

+ 12e
(
λ

4

n∑
t=1
‖`t‖21 + 1

λ

)∫ β

α

√
logN∞,∞(ε,G, n)dε.

The difference here is that have set R,B = 1. The first part of this section will be devoted to
proving this theorem, and Theorem 40 will follow from this result via Corollary 15.

11.5.3 Preliminaries

Definition 18 (Cover for a collection of trees). For a collection of RK-valued trees U of
length n, we let N∞,∞(ε, U), denote the cardinality of the smallest set V of RK valued trees
for which

∀u ∈ U ∀ε ∈ {±1}n ∃v ∈ V s.t. max
t∈[n]
‖ut(ε)− vt(ε)‖∞ ≤ ε.

Definition 19 (L∞/`∞ radius). For a function class F , define

rad∞,∞(F , n) = min{ε | logN∞,∞(ε,F , n) = 0}.

For a collection U of trees, define rad∞,∞(U) = min{ε | logN∞,∞(ε, U) = 0}.

The following two lemmas are Freedman-type inequalities for Rademacher tree processes that
we will use in the sequel. The first has an explicit dependence on the range, while the second
does not.

8Measuring loss in `1 may seem restrictive, but this is natural when working with importance-weighted
losses since these are 1-sparse, and by duality this enables us to cover in `∞ norm on the output space.
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Lemma 34. For any collection of [−R,+R]-valued trees V of length n, for any η > 0 and
α > 0,

E
ε

sup
v∈V

[
n∑
t=1

εt
(
vt(ε)− ηv2

t (ε)
)
− αηv2

t (ε)
]
≤ 2 log|V | ·

(
1
αη
∨ ηR

2

α

)
.

Proof of Lemma 34. Take V to be finite without loss of generality (otherwise the bound
is vacuous). As a starting point, for any λ > 0 we have

E
ε

sup
v∈V

[
n∑
t=1

εt
(
vt(ε)− ηv2

t (ε)
)
− αηv2

t (ε)
]

≤ 1
λ

log
(∑
v∈V

E
ε

exp
(

n∑
t=1

εtλ
(
vt(ε)− ηv2

t (ε)
)
− λαηv2

t (ε)
))

.

Applying the standard Rademacher mgf bound Eε eλε ≤ e
1
2λ

2 conditionally at each time
starting from t = n, this is upper bounded by

≤ 1
λ

log
(∑
v∈V

max
ε

exp
(

n∑
t=1

1
2λ

2
(
vt(ε)− ηv2

t (ε)
)2
− λαηv2

t (ε)
))

.

Since v takes values in [−R,+R], the exponent at time t can be upper bounded as

1
2λ

2
(
vt(ε)− ηv2

t (ε)
)2
− λαηv2

t (ε) ≤ λ2
(
1 + η2R2

)
v2
t (ε)− λαηv2

t (ε).

By setting λ = 1
2 min{αη, α/(ηR2)}, this is bounded by zero, which leads to a final bound of

log|V |/λ.
Lemma 35. For any collection of trees V of length n, for any η > 0,

E
ε

sup
v∈V

[
n∑
t=1

εtvt(ε)− ηv2
t (ε)

]
≤ log|V |

2η .

Proof of Lemma 35. Take V to be finite without loss of generality. As in the proof
of Lemma 34, using the standard Rademacher mgf bound and working backward from n, for
any λ > 0 we have

E
ε

sup
v∈V

[
n∑
t=1

εtvt(ε)− ηv2
t (ε)

]
≤ 1
λ

log
(∑
v∈V

E
ε

exp
(

n∑
t=1

εtλvt(ε)− ηλv2
t (ε)

))

≤ 1
λ

log
(∑
v∈V

max
ε

exp
(

n∑
t=1

1
2λ

2vt(ε)2 − ηλv2
t (ε)

))
.

The exponent at time t is
1
2λ

2v2
t (ε)− ηλv2

t (ε).

By setting λ = 2η, this is exactly zero, which leads to a final bound of log|V |/λ.
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Lemma 36. Let Z, W , and G be abstract sets and let functions Ag :W ×Z ×Z → R and
Bg :W ×Z ×Z → R be given for each element g ∈ G. Suppose that for any z, z′ ∈ Z and
w ∈ W it holds that A(w, z, z′) = −A(w, z′, z) and B(w, z, z′) = B(w, z′, z). Then

⟪ sup
wt∈W

sup
qt∈∆(Z)

E
zt,z′t∼qt

⟫
n

t=1
sup
g∈G

n∑
t=1

Ag(wt, zt, z′t) +Bg(wt, zt, z′t) (11.5)

≤ ⟪ sup
wt∈W

sup
qt∈∆(Z)

E
εt

E
zt,z′t∼qt

⟫
n

t=1
sup
g∈G

n∑
t=1

εtAg(wt, zt, z′t) +Bg(wt, zt, z′t), (11.6)

where ε is a sequence of independent Rademacher random variables.

Proof of Lemma 36. See proof of Lemma 3 in Rakhlin et al. (2010).

11.5.4 Proof of Theorem 44

Let η1, η2, η3 > 0 be fixed constants to be chosen later in the proof, and define

B(p1:n, `1:n) , η1

n∑
t=1
‖`t‖1 + η2

n∑
t=1
‖`t‖2

1︸ ︷︷ ︸
,B1(`1:n)

+ 2η3

n∑
t=1

E
s∼pt
〈s, `t〉2︸ ︷︷ ︸

,B2(p1:n,`1:n)

.

We consider a game where the goal of the learner is to achieve regret bounded by B, plus
some additive constant that will depend on η1, η2, η3, and the complexity of the class F . The
minimax achievability of B is given by

Vol
n (G, B) , ⟪ sup

xt∈X
inf

pt∈∆(S)
sup
`t∈L

E
s∼pt
⟫
n

t=1

[
n∑
t=1
〈s, `t〉 − inf

g∈G

n∑
t=1
〈g(xt), `t〉 −B(p1:n, `1:n)

]
.

Following discussion in Chapter 2, if we show that Vol
n (G, B) ≤ C for some constant C then

we have established existence of a randomized strategy that achieves an adaptive regret
bound of B(·) + C. Going forward we adopt the abbreviation Vol

n := Vol
n (G, B).

Minimax swap

At time t the value to go is given by

sup
xt∈X

inf
pt∈∆(S)

sup
`t∈L

[
E
s∼pt
〈s, `t〉 − 2η3 E

s∼pt
〈s, `t〉2 − η1‖`t‖1 − η2‖`t‖21

+ ⟪ sup
xτ∈X

inf
pτ∈∆(S)

sup
`τ∈L
⟫
n

τ=t+1

[
n∑

τ=t+1
E

s∼pτ
〈s, `τ 〉 − inf

g∈G

n∑
τ=1
〈g(xτ ), `τ 〉 −B(pτ+1:n, `τ+1:n)

]]
.

Note that the benchmark’s loss is only evaluated at the end, while we are incorporating the
adaptive term into the instantaneous value. Convexifying the `t player by allowing them to

217



select a randomized strategy qt, this is equal to

sup
xt∈X

inf
pt∈∆(S)

sup
qt∈∆(L)

E
`t∼qt

[
E
s∼pt
〈s, `t〉 − 2η3 E

s∼pt
〈s, `t〉2 − η1‖`t‖1 − η2‖`t‖21

+ ⟪ sup
xτ∈X

inf
pτ∈∆(S)

sup
`τ∈L
⟫
n

τ=t+1

[
n∑

τ=t+1
E

s∼pτ
〈s, `τ 〉 − inf

g∈G

n∑
τ=1
〈g(xτ ), `τ 〉 −B(pτ+1:n, `τ+1:n)

]]
.

This quantity is convex in pt and linear in qt so, under the compactness assumption on S
and L, the minimax theorem (Section 2.6) implies that this is equal to

sup
xt∈X

sup
qt∈∆(L)

inf
pt∈∆(S)

E
`t∼qt

[
E
s∼pt
〈s, `t〉 − 2η3 E

s∼pt
〈s, `t〉2 − η1‖`t‖1 − η2‖`t‖21

+ ⟪ sup
xτ∈X

inf
pτ∈∆(S)

sup
`τ∈L
⟫
n

τ=t+1

[
n∑

τ=t+1
E

s∼pτ
〈s, `τ 〉 − inf

g∈G

n∑
τ=1
〈g(xτ ), `τ 〉 −B(pτ+1:n, `τ+1:n)

]]
.

Repeating this analysis at each timestep and expanding the terms from B2, we arrive at the
expression

Vol
n = ⟪ sup

xt∈X
sup

qt∈∆(L)
inf

pt∈∆(S)
E

`t∼qt
⟫
n

t=1

[
n∑
t=1

E
s∼pt

[
〈s, `t〉 − 2η3〈s, `t〉2

]
− inf
g∈G

n∑
t=1
〈g(xt), `t〉 −B1(`1:n)

]
.

Upper bound by martingale process

We now use a standard “rearrangement” trick (see (Rakhlin et al., 2014), Theorem 1) to
show that Vol

n is equal to

⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t∼qt
⟫
n

t=1

[
sup
g∈G

[
n∑
t=1

inf
pt∈∆(S)

E
s∼pt

E
`′t∼qt

[〈
s, `′t

〉
− 2η3

〈
s, `′t

〉2]− n∑
t=1
〈f(xt), `t〉

]
−B1(`1:n)

]
,

where `′1:n is a sequence of “tangent” samples, where `′t is an independent copy of `t conditioned
on `1:t−1. This can be seen by working backwards from time n. Indeed, at time n, expanding
the ⟪?⟫nt=1 operator, we have

Vol
n = ⟪· · ·⟫n−1

t=1 sup
xn∈X

sup
qn∈∆(L)

inf
pn∈∆(S)

E
`n∼qn

[ n−1∑
t=1

E
s∼pt

[
〈s, `t〉 − 2η3〈s, `t〉2

]
+ E
s∼pn

[
〈s, `n〉 − 2η3〈s, `n〉2

]
− inf
g∈G

n∑
t=1
〈g(xt), `t〉 −B1(`1:n)

]
.

Using linearity of expectation this is equivalen to

⟪· · ·⟫n−1
t=1 sup

xn∈X
sup

qn∈∆(L)
inf

pn∈∆(S)
E

`n∼qn

[ n−1∑
t=1

E
s∼pt

[
〈s, `t〉 − 2η3〈s, `t〉2

]
+ E
`′n∼qn

E
s∼pn

[〈
s, `′n

〉
− 2η3

〈
s, `′n

〉2]
− inf
g∈G

n∑
t=1
〈g(xt), `t〉 −B1(`1:n)

]
.
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Using that only a single term has functional dependence on pn, this is equal to

⟪· · ·⟫n−1
t=1 sup

xn∈X
sup

qn∈∆(L)
E

`n∼qn

[ n−1∑
t=1

E
s∼pt

[
〈s, `t〉 − 2η3〈s, `t〉2

]
+ inf
pn∈∆(S)

E
`′n∼qn

E
s∼pn

[〈
s, `′n

〉
− 2η3

〈
s, `′n

〉2]
− inf
g∈G

n∑
t=1
〈g(xt), `t〉 −B1(`1:n)

]
.

Expanding the infimum over g ∈ G, this is equal to

⟪· · ·⟫n−1
t=1 sup

xn∈X
sup

qn∈∆(L)
E

`n∼qn
sup
g∈G

[
n−1∑
t=1

E
s∼pt

[
〈s, `t〉 − 2η3〈s, `t〉2

]

+ inf
pn∈∆(S)

E
`′n∼qn

E
s∼pn

[〈
s, `′n

〉
− 2η3

〈
s, `′n

〉2]− n∑
t=1
〈g(xt), `t〉 −B1(`1:n)

]
.

We handle time n− 1 in a similar fashion by first splitting the ⟪?⟫n−1
t=1 operator:

= ⟪· · ·⟫n−2
t=1 sup

xn−1∈X
sup

qn−1∈∆(L)
inf

pn−1∈∆(S)
E

`n−1∼qn−1
sup
xn∈X

sup
qn∈∆(L)

E
`n∼qn

sup
g∈G

[
n−2∑
t=1

E
s∼pt

[
〈s, `t〉 − 2η3〈s, `t〉2

]
+ E
s∼pn−1

[
〈s, `n−1〉 − 2η3〈s, `n−1〉2

]

+ inf
pn∈∆(S)

E
`′n∼qn

E
s∼pn

[〈
s, `′n

〉
− 2η3

〈
s, `′n

〉2]− n∑
t=1
〈g(xt), `t〉 −B1(`1:n)

]
.

Rearranging the supremums to make dependence on terms from time n− 1 clear:

=⟪· · ·⟫n−2
t=1 sup

xn−1∈X
sup

qn−1∈∆(L)
inf

pn−1∈∆(S)
E

`n−1∼qn−1[
n−2∑
t=1

E
s∼pt

[
〈s, `t〉 − 2η3〈s, `t〉2

]
+ E
s∼pn−1

[
〈s, `n−1〉 − 2η3〈s, `n−1〉2

]

+ sup
xn∈X

sup
qn∈∆(L)

E
`n∼qn

sup
g∈G

[
inf

pn∈∆(S)
E

`′n∼qn
E

s∼pn

[〈
s, `′n

〉
− 2η3

〈
s, `′n

〉2]− n∑
t=1
〈g(xt), `t〉 −B1(`1:n)

]]
.

Using linearity of expectation and moving the infimum over qn−1:

=⟪· · ·⟫n−2
t=1 sup

xn−1∈X
sup

qn−1∈∆(L)
E

`n−1∼qn−1[
n−2∑
t=1

E
s∼pt

[
〈s, `t〉 − 2η3〈s, `t〉2

]
+ inf
pn−1∈∆(S)

E
`′n−1∼qn−1

E
s∼pn−1

[〈
s, `′n−1

〉
− 2η3

〈
s, `′n−1

〉2]

+ sup
xn∈X

sup
qn∈∆(L)

E
`n∼qn

sup
g∈G

[
inf

pn∈∆(S)
E

`′n∼qn
E

s∼pn

[〈
s, `′n

〉
− 2η3

〈
s, `′n

〉2]− n∑
t=1
〈g(xt), `t〉 −B1(`1:n)

]]
.
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The last step is to move the supremums from time t = n and the supremum over g ∈ G
outside the entire expression, similar to what was done at time t = n.

= ⟪· · ·⟫n−2
t=1 sup

xn−1∈X
sup

qn−1∈∆(L)
E

`n−1∼qn−1
sup
xn∈X

sup
qn∈∆(L)

E
`n∼qn

sup
g∈G[ n−2∑

t=1
E
s∼pt

[
〈s, `t〉 − 2η3〈s, `t〉2

]
+ inf
pn−1∈∆(S)

E
`′n−1∼qn−1

E
s∼pn−1

[〈
s, `′n−1

〉
− 2η3

〈
s, `′n−1

〉2]
+ inf
pn∈∆(S)

E
`′n∼qn

E
s∼pn

[〈
s, `′n

〉
− 2η3

〈
s, `′n

〉2]− n∑
t=1
〈g(xt), `t〉 −B1(`1:n)

]
.

Repeating this argument down from time t = n− 2 to time t = 1 yields the result.
To conclude this portion of the proof, we move to an upper bound by choosing the infimum
over pt at each timestep t to match g, which is possible because each infimum now occurs
inside the expression for which the supremum over g ∈ G is taken. First, observe that the
minimax value Vol

n is equal to

⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t∼qt
⟫
n

t=1

[
sup
g∈G

[
n∑
t=1

inf
pt∈∆(S)

E
s∼pt

E
`′t∼qt

[〈
s, `′t

〉
− 2η3

〈
s, `′t

〉2]− n∑
t=1
〈f(xt), `t〉

]
−B1(`1:n)

]
.

Next, we have an upper bound of

⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t∼qt
⟫
n

t=1

[
sup
g∈G

[
n∑
t=1

E
`′t∼qt

[〈
g(xt), `′t

〉
− 2η3

〈
g(xt), `′t

〉2]− n∑
t=1
〈g(xt), `t〉

]
−B1(`1:n)

]
.

Finally, this is equal to

⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t∼qt
⟫
n

t=1

[
sup
g∈G

[
n∑
t=1

E
`′t∼qt

[〈
g(xt), `′t

〉]
− 〈g(xt), `t〉 − 2η3

n∑
t=1

E
`′t∼qt

[〈
g(xt), `′t

〉2]]

−B1(`1:n)
]
.

(11.7)

Symmetrization

Introduce the notation H(x) = x− η3x
2. We now claim that the quantity appearing in (11.7)

is bounded by

2 · sup
x

sup
`

E
ε

[
sup
g∈G

[
n∑
t=1

εtH(〈g(xt(ε)), `t(ε)〉)− η3

n∑
t=1
〈g(xt(ε)), `t(ε)〉2

]
−B1(`1:n(ε))

]
, (11.8)

where the supremum ranges over all X -valued trees x and L-valued trees `, both of length n.
The value

⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t∼qt
⟫
n

t=1

[
sup
g∈G

[
n∑
t=1

E
`′t∼qt

[〈
g(xt), `′t

〉]
− 〈g(xt), `t〉 − 2η3

n∑
t=1

E
`′t∼qt

[〈
g(xt), `′t

〉2]]

−B1(`1:n)
]
,
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by adding and subtracting the same term, is equal to

⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t∼qt
⟫
n

t=1

[
sup
g∈G

[ n∑
t=1

E
`′t∼qt

[〈
g(xt), `′t

〉
− η3

〈
g(xt), `′t

〉2]− (〈g(xt), `t〉 − η3〈g(xt), `t〉2
)

− η3

n∑
t=1

(
E

`t∼qt

[
〈g(xt), `t〉2

]
+ 〈g(xt), `t〉2

)]
−B1(`1:n)

]

=⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t∼qt
⟫
n

t=1

[
sup
g∈G

[ n∑
t=1

E
`′t∼qt

[
H(
〈
g(xt), `′t

〉
)
]
−H(〈g(xt), `t〉)

− η3

n∑
t=1

(
E

`t∼qt

[
〈g(xt), `t〉2

]
+ 〈g(xt), `t〉2

)]
−B1(`1:n)

]
.

Using Jensen’s inequality, this is upper bounded by

⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t,`′t∼qt

⟫
n

t=1

[
sup
g∈G

[
n∑
t=1

H(〈g(xt), `′t〉)−H(〈g(xt), `t〉)

−η3

n∑
t=1

(
〈g(xt), `′t〉

2 + 〈g(xt), `t〉2
)]
−B1(`1:n)

]
, (11.9)

where `′1:n is a tangent sequence. We now claim that this is equal to

⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t,`′t∼qt

⟫
n

t=1

[
sup
g∈G

[
n∑
t=1

H(〈g(xt), `′t〉)−H(〈g(xt), `t〉)

− η3

n∑
t=1

(
〈g(xt), `′t〉

2 + 〈g(xt), `t〉2
)]
− 1

2B1(`1:n)− 1
2B1(`′1:n)

]
.

This can be seen as follows: Let Q be the joint distribution over `1, . . . , `n obtaining the
supremum above, or if the supremum is not obtained let it be any point in a limit sequence
approaching the supremum. Then the value of the B1 term in (11.9) is equal to (respectively,
ε-close to)

E
Q
B1(`1:n) = η1

n∑
t=1

E
Q
‖`t‖1 + η2

n∑
t=1

E
Q
‖`t‖2

1

= η1

n∑
t=1

E
`1:t−1

E[‖`t‖1 | `1:t−1] + η2

n∑
t=1

E
`1:t−1

E
[
‖`t‖2

1 | `1:t−1
]

= η1

n∑
t=1

E
`1:t−1

E[‖`′t‖1 | `1:t−1] + η2

n∑
t=1

E
`1:t−1

E
[
‖`′t‖

2
1 | `1:t−1

]
= E

`1:n
E

`′1:n|`1:n
B1(`′1:n).

Replacing `t with `′t follows from the definition of the tangent sequence, since `′t and `t are
identically distributed, conditioned on `1:t−1. This shows that we can replace B1(`1:n) with
B1(`1:n)/2 +B1(`′1:n)/2 above, since we are working with the expectation.
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We have now established that (11.9) is equal to

⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t,`′t∼qt

⟫
n

t=1

[
sup
g∈G

[
n∑
t=1

H(〈g(xt), `′t〉)︸ ︷︷ ︸
A1

−H(〈g(xt), `t〉)︸ ︷︷ ︸
A2

− η3

(
n∑
t=1
〈g(xt), `′t〉

2 + 〈g(xt), `t〉2︸ ︷︷ ︸
A3

)]

− η1

2

(
n∑
t=1
‖`t‖1 + ‖`′t‖1︸ ︷︷ ︸

A4

)
− η2

2

(
n∑
t=1
‖`t‖2

1 + ‖`′t‖
2
1︸ ︷︷ ︸

A5

)]
.

Fix a time t and suppose the values of `t and `′t are exchanged. In this case the value of
A1 − A2 is switched to A2 − A1, while the values of A3, A4, and A5 are left unchanged.
Appealing to Lemma 36, we can therefore introduce Rademacher random variables ε1, . . . , εn
with equality as follows:

⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t,`′t∼qt

E
εt
⟫
n

t=1

[
sup
g∈G

[
n∑
t=1

εt
(
H(
〈
g(xt), `′t

〉
)−H(〈g(xt), `t〉)

)
− η3

(
n∑
t=1

〈
g(xt), `′t

〉2 + 〈g(xt), `t〉2
)]

− η1
2

(
n∑
t=1
‖`t‖1 +

∥∥`′t∥∥1

)
− η2

2

(
n∑
t=1
‖`t‖21 +

∥∥`′t∥∥2
1

)]
.

Splitting the supremum, this is upper bounded by two times the following quantity

⟪ sup
xt∈X

sup
qt∈∆(L)

E
`t∼qt

E
εt
⟫
n

t=1

[
sup
g∈G

[ n∑
t=1

εtH(〈g(xt), `t〉)− η3

n∑
t=1
〈g(xt), `t〉2

]
− η1

2

n∑
t=1
‖`t‖1 −

η2
2

n∑
t=1
‖`t‖21

]

= ⟪ sup
xt∈X

sup
`t∈L

E
εt
⟫
n

t=1

[
sup
g∈G

[ n∑
t=1

εtH(〈g(xt), `t〉)− η3

n∑
t=1
〈g(xt), `t〉2

]
− η1

2

n∑
t=1
‖`t‖1 −

η2
2

n∑
t=1
‖`t‖21

]

= sup
x

sup
`

E
ε

[
sup
g∈G

[ n∑
t=1

εtH(〈g(xt(ε)), `t(ε)〉)− η3

n∑
t=1
〈g(xt(ε)), `t(ε)〉2

]

−η1
2

n∑
t=1
‖`t(ε)‖1 −

η2
2

n∑
t=1
‖`t(ε)‖21

]
.

The first equality is somewhat subtle, but holds because at time n, the expression is linear
in qn so it is maximized at a point `n, allowing us to work backwards to remove the qt
distributions.

Introducing a coarse cover

We now break the process appearing in (11.8) into multiple terms, each of which will be
handled by covering. Consider any fixed pair of trees x, `. Note that with the trees fixed
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(11.7) is at most

2 · E
ε

sup
g∈G

[
n∑
t=1

εtH(〈g(xt(ε)), `t(ε)〉)− η3

n∑
t=1
〈g(xt(ε)), `t(ε)〉2

]
− E

ε
B1(`1:n(ε)).

We will focus on the supremum for now. We begin by adapting a trick from Rakhlin and
Sridharan (2015) to introduce a coarse sequential cover at scale β. Let V ′ be a cover for G on
the tree x with respect to L∞/`∞ at scale β/2. Then the size of V ′ is N∞,∞(β/2,G,x), and

max
g∈G

max
ε∈{±1}n

min
v′∈V ′

max
t∈[n]
‖g(xt(ε))− v′t(ε)‖∞ ≤ β/2.

Recall that since g(x) ∈ RK
+ for all g ∈ G, we may take each v′ ∈ V ′ to have non-negative

coordinates without loss of generality. Likewise, it follows that we may take each v′ ∈ V ′ to
have ‖v′t(ε)‖∞ ≤ supx∈X supg∈G‖g(x)‖∞ without loss of generality.

We construct a new β-cover V 1 from V ′ by defining for each tree v′ ∈ V ′ a new tree v as
follows:

∀ε ∈ {±1}n ∀t ∈ [n] ∀a ∈ [K] : vt(ε)a = max{v′t(ε)a − β/2, 0}.

It is easy to verify that for each time t and path ε we have ‖vt(ε)− v′t(ε)‖∞ ≤ β/2, so V 1

is indeed a β-cover with respect to L∞/`∞. More importantly, for each g ∈ G and path ε,
there exists a tree v ∈ V ′ that is β-close in the L∞/`∞ sense and has vt(ε)a ≤ g(xt(ε))a
coordinate-wise. We will let v1[ε, g] denote this tree, and it is constructed by taking the
β/2-close tree v′ promised by the definition of V ′, then performing the clipping operation
above to get the corresponding β-close element of V 1. The clipping operation and β/2
closeness of v′ imply that for each time t ∈ [n] and coordinate a ∈ [K],

v1
t [ε, g]a − g(xt(ε))a = max{v′t(ε)a − β/2, 0} − g(xt(ε))a

≤ max{‖v′t(ε)− g(xt(ε))‖∞ + g(xt(ε))a − β/2, 0} − g(xt(ε))a
≤ max{g(xt(ε))a, 0} − g(xt(ε))a = 0.

This establishes the desired ordering on coordinates. Returning to the process at hand, we
have

E
ε

sup
g∈G

[
n∑
t=1

εtH〈g(xt(ε)), `t(ε)〉)− η3

n∑
t=1
〈g(xt(ε)), `t(ε)〉2

]
.

Now we add and subtract terms involving the covering element v1(ε, g):

= E
ε

sup
g∈G

[
n∑
t=1

εtH(
〈
v1
t [ε, g], `t(ε)

〉
)− η3

n∑
t=1
〈g(xt(ε)), `t(ε)〉2

+
n∑
t=1

εtH(〈g(xt(ε)), `t(ε)〉)− εtH(
〈
v1
t [ε, g], `t(ε)

〉
)
]
.

We now invoke the coordinate domination property of v1[ε, g] described above. Observe
that since g(xt(ε)), v1

t [ε, g], and `t(ε) are all nonnegative coordinate-wise, it holds that
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〈v1
t [ε, g], `t(ε)〉2 ≤ 〈g(xt(ε)), `t(ε)〉2. Consequently, we can replace the offset term (not

involving εt) with a similar term involving v1
t [ε, g]

≤ E
ε

sup
g∈G

[
n∑
t=1

εtH(
〈
v1
t [ε, f ], `t(ε)

〉
)− η3

n∑
t=1

〈
v1
t [ε, g], `t(ε)

〉2

+
n∑
t=1

εtH(〈f(xt(ε)), `t(ε)〉)− εtH(
〈
v1
t [ε, f ], `t(ε)

〉
)
]
.

Splitting the supremum and gathering terms, this implies that Vol
n is upper bounded by

E
ε

sup
v1∈V 1

[
n∑
t=1

εtH(
〈
v1
t (ε), `t(ε)

〉
)− η3

n∑
t=1

〈
v1
t (ε), `t(ε)

〉2
]

︸ ︷︷ ︸
(?)

+ E
ε

sup
g∈G

[
n∑
t=1

εtH(〈g(xt(ε)), `t(ε)〉)− εtH(
〈
v1
t [ε, g], `t(ε)

〉
)
]
− E

ε
B1(`1:n(ε))︸ ︷︷ ︸

(??)

.

Bounding (?)

We appeal to Lemma 34 with a class of real-valued trees

U :=
{
ε 7→

(〈
v1
t (ε), `t(ε)

〉)
t≤n
| v1 ∈ V 1

}
.

The class U has range contained in [−1,+1], since |〈v1
t (ε), `t(ε)〉| ≤ ‖v1

t (ε)‖∞‖`t(ε)‖1 ≤ 1,
where these norm bounds are by assumption on G and L. Recall that H(x) = x− η3x

2. We
therefore conclude that

(?) = E
ε

sup
v1∈V 1

[
n∑
t=1

εtH(
〈
v1
t (ε), `t(ε)

〉
)− η3

n∑
t=1

〈
v1
t (ε), `t(ε)

〉2
]

≤ 21 + η2
3

η3
log
∣∣∣V 1

∣∣∣ = 21 + η2
3

η3
logN∞,∞(β/2,G,x).

Bounding (??)

Fix α > 0 and let N = blog(β/α)c − 1. For each i ≥ 1 define εi = βe−(i−1), and for each
i > 1 let V i be a sequential cover of G on x at scale εi with respect to L∞/`∞ (keeping in
mind that V 1 is defined as in the preceding section). For a given path ε ∈ {±1}n and g ∈ G,
let vi[ε, g] denote the εi-close element of V i. Below, we will only evaluate H(x) = x− η3x

2

over the domain [−1,+1]; it is (1 + 2η3)-Lipschitz over this domain. Then the leading term
of (??) is equal to

E
ε

sup
g∈G

[
n∑
t=1

εt
(
H(〈g(xt(ε)), `t(ε)〉)−H

(〈
v1
t [ε, g], `t(ε)

〉))]
.
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Introducing the covering elements defined above to this expression, we have the equality

=E
ε

sup
g∈G

[
n∑
t=1

εt
(
H(〈g(xt(ε)), `t(ε)〉)−H

(〈
vNt [ε, g], `t(ε)

〉))

+
N−1∑
i=1

n∑
t=1

εt
(
H
(〈
vi+1
t [ε, g], `t(ε)

〉)
−H

(〈
vit[ε, g], `t(ε)

〉))]

≤ E
ε

sup
g∈G

[
n∑
t=1

εt
(
H(〈g(xt(ε)), `t(ε)〉)−H

(〈
vNt [ε, g], `t(ε)

〉))]
︸ ︷︷ ︸

,CN

+
N−1∑
i=1

E
ε

sup
g∈G

[
n∑
t=1

εt
(
H
(〈
vi+1
t [ε, g], `t(ε)

〉)
−H

(〈
vit[ε, g], `t(ε)

〉))]
︸ ︷︷ ︸

,Ci

.

Bounding CN

We first bound CN in terms of one of the terms appearing in B1.

CN =E
ε

sup
g∈G

[
n∑
t=1

εt
(
H(〈g(xt(ε)), `t(ε)〉)−H

(〈
vNt [ε, g], `t(ε)

〉))]

≤ E
ε

[
n∑
t=1

sup
g∈G

∣∣∣H(〈g(xt(ε)), `t(ε)〉)−H
(〈
vNt [ε, g], `t(ε)

〉)∣∣∣]

≤ (1 + 2η3)E
ε

[
n∑
t=1

sup
g∈G

∣∣∣〈g(xt(ε)), `t(ε)〉 −
〈
vNt [ε, g], `t(ε)

〉∣∣∣].
To proceed, we apply Hölder’s inequality.

≤ (1 + 2η3)E
ε

[
n∑
t=1
‖`t(ε)‖1 sup

g∈G

∥∥∥g(xt(ε))− vNt [ε, g]
∥∥∥
∞

]

≤ (1 + 2η3) max
ε

sup
g∈G

max
t∈[n]

∥∥∥g(xt(ε))− vNt [ε, g]
∥∥∥
∞
· E
ε

[
n∑
t=1
‖`t(ε)‖1

]

≤ (1 + 2η3)e2α · E
ε

[
n∑
t=1
‖`t(ε)‖1

]
.

The first inequality uses that εt ∈ {±1}, while the second uses the Lipschitzness of H over
[−1,+1]. The third and fourth are both applications of Hölder’s inequality, first to the `1/`∞
dual pairing, and then to for the distributions over L1/L∞. Finally, the definition of the
covering element vNt —in particular, that it is an L∞/`∞-cover—implies that the supremum
term is bounded by εN ≤ e2 · α, which yields the final bound.
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Bounding Ci

Our goal is to bound

Ci = E
ε

sup
g∈G

[
n∑
t=1

εt
(
H
(〈
vi+1
t [ε, g], `t(ε)

〉)
−H

(〈
vit[ε, g], `t(ε)

〉))]
.

We define a class W of real-valued trees as follows. Let 1 ≤ a ≤ |V i| and 1 ≤ b ≤ |V i+1|, and
fix an arbitrary ordering va ∈ V i and vb ∈ V i+1 of the elements of V i/V i+1. For each pair
(a, b) define a tree w(a,b) via

w
(a,b)
t (ε) =

{
H
(〈
vbt(ε), `t(ε)

〉)
−H(〈vat (ε), `t(ε)〉), ∃g ∈ G s.t. va = v[ε, g]i,vb = v[ε, g]i+1,

0, otherwise.
Then Ci is bounded by

E
ε

sup
w∈W

n∑
t=1

εtwt(ε).

Then Lemma 35 implies that for any fixed η > 0,

E
ε

sup
w∈W

[
n∑
t=1

εtwt(ε)− ηw2
t (ε)

]
≤ log|W |

2η .

Rearranging and applying subadditivity of the supremum, this implies

E
ε

sup
w∈W

n∑
t=1

εtwt(ε) ≤ η · E
ε

sup
w∈W

n∑
t=1
w2
t (ε) + log|W |

2η .

Optimizing over η (which is admissible because the statement above is a deterministic
inequality) leads to a further bound of

E
ε

sup
w∈W

n∑
t=1

εtwt(ε) ≤
√√√√2E

ε
sup
w∈W

n∑
t=1
w2
t (ε) · log|W |.

We proceed to bound each term in the square root. For the logarithmic term, by construction
we have |W | ≤ |V i||V i+1| ≤ |V i+1|2 = N∞,∞(εi+1,G,x)2.

For the variance, let w(a,b) ∈ W and the path ε be fixed. There are two cases: Either
w(ε) = 0, or there exists g ∈ G, such that va = v[ε, g]i and vb = v[ε, g]i+1. The former case
is trivial while for the latter, in a similar way to the bound for CN , we get

n∑
t=1
w

(a,b)
t (ε)2 =

n∑
t=1

(
H
(〈
vi+1
t [ε, g], `t(ε)

〉)
−H

(〈
vit[ε, g], `t(ε)

〉))2

≤ (1 + 2η3)2
n∑
t=1

(〈
vi+1
t [ε, g], `t(ε)

〉
−
〈
vit[ε, g], `t(ε)

〉)2

≤ (1 + 2η3)2
n∑
t=1
‖`t(ε)‖2

1

∥∥∥vi+1
t [ε, g]− vit[ε, g]

∥∥∥2

∞

≤ (1 + 2η3)2 max
ε′

max
t∈[n]

∥∥∥vi+1
t [ε′, g]− vit[ε′, g]

∥∥∥2

∞
·
n∑
t=1
‖`t(ε)‖2

1.
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Where we have used Lipschitzness of H in the first inequality and Hölder’s inequality in the
second and third.

Finally, using the L∞/`∞ cover property of vi[ε, g] and vi+1[ε, g] and the triangle inequality,
we have

max
ε

max
t∈[n]

∥∥∥vi+1
t [ε, g]− vit[ε, g]

∥∥∥
∞

≤ max
ε

max
t∈[n]

∥∥∥vi+1
t [ε, g]− g(xt(ε))

∥∥∥
∞

+ max
ε

max
t∈[n]

∥∥∥g(xt(ε))− vit[ε, g]
∥∥∥
∞

≤ εi + εi+1 ≤ 2εi.

We have just shown that for every sequence ε and every w(a,b) ∈ W , ∑n
t=1w

(a,b)
t (ε)2 ≤

4(1 + 2η3)2ε2
i ·
∑n
t=1‖`t(ε)‖

2
1. It follows that

E
ε

sup
w∈W

n∑
t=1
wt(ε)2 ≤ 4(1 + 2η3)2ε2

i · Eε
n∑
t=1
‖`t(ε)‖2

1.

Plugging this bound back into the main inequality, we have shown

E
ε

sup
w∈W

n∑
t=1

εtwt(ε) ≤ 4e(1 + 2η3)εi+1

√√√√E
ε

n∑
t=1
‖`t(ε)‖2

1 · logN∞,∞(εi+1,G,x).

Final bound on (??)

Collecting terms, we have shown that

(??)

≤ (1 + 2η3)e2α · E
ε

[ n∑
t=1
‖`t(ε)‖1

]

+ 4e(1 + 2η3)

√√√√E
ε

n∑
t=1
‖`t(ε)‖21

N−1∑
i=1

εi+1
√

logN∞,∞(εi+1,G,x)− E
ε
B1(`1:n(ε)).

(11.10)

Following the standard Dudley chaining proof, we have

N−1∑
i=1

εi+1

√
logN∞,∞(εi+1,G,x)2 ≤

N∑
i=1

(εi − εi+1)
√

logN∞,∞(εi,G,x)

≤ 2
∫ β

εN+1

√
logN∞,∞(ε,G,x)dε.

We further upper bound by

≤ 2
∫ β

α

√
logN∞,∞(ε,G,x)dε ≤ 2

∫ β

α

√
logN∞,∞(ε,G, n)dε.

We are using the definition of N , which implies that α ≤ εN+1.
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Now recall the definition of B1(`1:n(ε)):

B1(`1:n(ε)) = η1

n∑
t=1
‖`t(ε)‖1 + η2

n∑
t=1
‖`t(ε)‖2

1.

Taking η1 ≥ (1 + 2η3)e2α, the first term in B1 cancels out the first term in (11.10), leaving
us with

(??) ≤ 4e(1 + 2η3)
√√√√E

ε

n∑
t=1
‖`t(ε)‖2

1

∫ β

α

√
logN∞,∞(ε,G, n)dε− η2 E

ε

n∑
t=1
‖`t(ε)‖2

1

≤ 4e(1 + 2η3)
(
η4

4 E
ε

n∑
t=1
‖`t(ε)‖2

1 + 1
η4

)∫ β

α

√
logN∞,∞(ε,G, n)dε− η2 E

ε

n∑
t=1
‖`t(ε)‖2

1.

Where the last step applies for any η4 > 0 by the AM-GM inequality. For any η2 ≥ e(1+2η3)η4
, the first and third terms cancel, leaving us with an upper bound of

(??) ≤ 4e(1 + 2η3)
η4

∫ β

α

√
logN∞,∞(ε,G, n)dε.

This term does not depend on the trees x or `, so we are done with (??).

Final bound

Under the assumptions on η1, η2, η3, η4, α, and β, the bounds on (?) and (??) we have
established imply

Vol
n ≤ 21 + η2

3
η3

logN∞,∞(β/2,G, n) + 4e(1 + 2η3)
η4

∫ β

α

√
logN∞,∞(ε,G, n)dε.

The definition of Vol
n implies that there exists an algorithm with regret bounded by Vol

n +
B(p1:n, `1:n) on every sequence. The final regret inequality is
n∑
t=1

E
s∼pt
〈s, `t〉 − inf

g∈G

n∑
t=1
〈f(xt), `t〉

≤ 2η3

n∑
t=1

E
s∼pt
〈s, `t〉2 + 21 + η2

3
η3

logN∞,∞(β/2,G, n)

+ 4e(1 + 2η3)
(
η4

4

n∑
t=1
‖`t‖2

1 + 1
η4

)∫ β

α

√
logN∞,∞(ε,G, n)dε+ (1 + 2η3)e2α

n∑
t=1
‖`t‖1.

To obtain the bound in the theorem statement, we rebind η = η3, λ = η4 and use the
assumption η ≤ 1.
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11.5.5 Proofs for Remaining Minimax Results

Our bandit results require a generalization of Theorem 44 to the case where losses and the
class G may not be bounded by 1.
Corollary 15. Suppose we are in the setting of Theorem 44, but with the bounds ‖`‖1 ≤ R
for all ` ∈ L and ‖s‖∞ ≤ B for all s ∈ S. For any constants η ∈ (0, 1], λ > 0, and β > α > 0,
there exists an algorithm making predictions in S that attains a regret guarantee of

n∑
t=1

E
st∼pt
〈st, `t〉 − inf

g∈G

n∑
t=1
〈g(xt), `t〉

≤ 2η
RB

n∑
t=1

E
st∼pt
〈st, `t〉2 + 4RB

η
logN∞,∞(β/2,G, n) + 3e2α

n∑
t=1
‖`t‖1

+ 12e
(
λ

4R

n∑
t=1
‖`t‖21 + R

λ

)∫ β

α

√
logN∞,∞(ε,G, n)dε.

Furthermore, if upper bounds ∑n
t=1‖`t‖

2
1 ≤ V and ∑n

t=1 Est∼pt〈st, `t〉
2 ≤ Ṽ are known in

advance, η and λ can be selected to guarantee regret
n∑
t=1

E
st∼pt
〈st, `t〉 − inf

g∈G

n∑
t=1
〈g(xt), `t〉

≤ 8
√
Ṽ · logN∞,∞(β/2,G, n) + 8RB logN∞,∞(β/2,G, n)

+ 12e
√
V

∫ β

α

√
logN∞,∞(ε,G, n)dε+ 3eα

n∑
t=1
‖`t‖1.

Proof of Corollary 15. Apply Theorem 44 with losses `t/R and class G/B. The precondi-
tions of the theorem are satisified, so it implies existence of an algorithm making predictions
in S/B with regret bound

1
R

n∑
t=1

E
st∼pt
〈st, `t〉 −

1
R

inf
g′∈G/B

n∑
t=1

〈
g′(xt), `t

〉
≤ 2η
R2

n∑
t=1

E
st∼pt
〈st, `t〉2 + 4

η
logN∞,∞(β/2,G/B, n) + 3e2α

R

n∑
t=1
‖`t‖1

+ 12e
(

λ

4R2

n∑
t=1
‖`t‖21 + 1

λ

)∫ β

α

√
logN∞,∞(ε,G/B, n)dε.
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Rescaling both sides by BR and letting ŝt = st ·B (so ŝt ∈ S), this implies
n∑
t=1

E
ŝt∼pt
〈ŝt, `t〉 − inf

g∈G

n∑
t=1
〈g(xt), `t〉

≤ 2η
RB

n∑
t=1

E
ŝt∼pt
〈ŝt, `t〉2 + 4RB

η
logN∞,∞(β/2,G/B, n) + 3e2αB

n∑
t=1
‖`t‖1

+ 12e
(
λB

4R

n∑
t=1
‖`t‖21 + RB

λ

)∫ β

α

√
logN∞,∞(ε,G/B, n)dε.

≤ 2η
RB

n∑
t=1

E
ŝt∼pt
〈ŝt, `t〉2 + 4RB

η
logN∞,∞(βB/2,G, n) + 3e2αB

n∑
t=1
‖`t‖1

+ 12e
(
λB

4R

n∑
t=1
‖`t‖21 + RB

λ

)∫ β

α

√
logN∞,∞(εB,G, n)dε.

Using a change of variables in the Dudley integral, we get

≤ 2η
RB

n∑
t=1

E
ŝt∼pt
〈ŝt, `t〉2 + 4RB

η
logN∞,∞(βB/2,G, n) + 3e2αB

n∑
t=1
‖`t‖1

+ 12e
(
λ

4R

n∑
t=1
‖`t‖21 + R

λ

)∫ βB

αB

√
logN∞,∞(ε,G, n)dε.

The final result follows by rebinding α′ = αB and β′ = βB.

For the second claim, apply the upper bounds to obtain

2η
RB

Ṽ + 4RB
η

logN∞,∞(β/2,G, n) + 3e2αB
n∑
t=1
‖`t‖1

+ 12e
(
λ

4RV + R

λ

)∫ β

α

√
logN∞,∞(ε,G, n)dε.

Now set λ = 2R/
√
V and η =

√
2RB

√
logN∞,∞(β/2,G, n)/Ṽ ∧ 1 to obtain the claimed

bound. Note that the range term arises from the constraint that η ∈ (0, 1].

Proof of Theorem 41. Recall that we use the reduction:

• Initialize full information algorithm whose existence is guaranteed by Theorem 44 with
G = φγ ◦ F :

• For time t = 1, . . . , n:

– Receive xt and define Pt(a) , Est∼pt
st(a)∑

a′∈[K] st(a
′) , where pt is the output of the full

information algorithm at time t.

– Sample action at ∼ P µ
t and feed importance-weighted loss ˆ̀

t(a) =
1{at = a}`t(a)/P µ

t (a) into the full information algorithm.
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With this setup, Corollary 15 guarantees that the following deterministic regret inequality
holds for every sequence of outcomes (i.e. for every sequence a1, . . . , an sampled by the
algorithm):

n∑
t=1

E
st∼pt

〈
st, ˆ̀

t

〉
− inf
f∈F

n∑
t=1

〈
φγ(f(xt)), ˆ̀

t

〉
≤ 2η
RB

n∑
t=1

E
st∼pt

〈
st, ˆ̀

t

〉2
+ 4RB

η
logN∞,∞(β/2, φγ ◦ F , n) + 3e2α

n∑
t=1

∥∥∥ˆ̀
t

∥∥∥
1

+ 12e
(
λ

4R

n∑
t=1

∥∥∥ˆ̀
t

∥∥∥2

1
+ R

λ

)∫ β

α

√
logN∞,∞(ε, φγ ◦ F , n)dε,

where the boundedness of the ramp loss implies B ≤ 1 and the smoothing factor µ in P µ
t

guarantees R ≤ 1/µ. Taking expectation over the draw of a1, . . . , an, for any fixed f ∈ F we
obtain the inequality

E
[
n∑
t=1

E
st∼pt

〈
st, ˆ̀

t

〉
−

n∑
t=1

〈
φγ(f(xt)), ˆ̀

t

〉]

≤ E
[ 2η

1/µ

n∑
t=1

E
[

E
st∼pt

〈
st, ˆ̀

t

〉2
| Jt

]
+ 4
ηµ

logN∞,∞(β/2, φγ ◦ F , n) + 3e2α
n∑
t=1

E
[∥∥∥ˆ̀

t

∥∥∥
1
| Jt

]
+ 12e

(
λ

4/µ

n∑
t=1

E
[∥∥∥ˆ̀

t

∥∥∥2

1
| Jt

]
+ 1
λµ

)∫ β

α

√
logN∞,∞(ε, φγ ◦ F , n)dε

]
,

where the filtration Jt is defined as in Lemma 32. Using that the importance weighted losses
are unbiased, the left-hand side is equal to

E
[
n∑
t=1

E
st∼pt
〈st, `t〉 −

n∑
t=1
〈φγ(f(xt)), `t〉

]
.

We also have the following three properties, where the first two use that ˆ̀
t is 1-sparse, and

the last follows from Lemma 32:

1. E
[∥∥∥ˆ̀

t

∥∥∥
1
| Jt

]
= ∑

a∈[K] P
µ
t (a)ˆ̀

t(a) = ∑
a∈[K] `t(a) ≤ K.

2. E
[∥∥∥ˆ̀

t

∥∥∥2

1
| Jt

]
= ∑

a∈[K] P
µ
t (a)ˆ̀2

t (a) = ∑
a∈[K]

`t(a)
Pµt (a) ≤

K
µ

.

3. E
[
Est∼pt

〈
st, ˆ̀

t

〉2
| Jt

]
≤ K2.

Together, these facts yield the bound

E
[
n∑
t=1

E
st∼pt
〈st, `t〉 −

n∑
t=1
〈φγ(f(xt)), `t〉

]
≤ 2η

1/µK
2n+ 4

ηµ
logN∞,∞(β/2, φγ ◦ F , n) + 3e2αKn

+ 12e
(
λKn

4 + 1
λµ

)∫ β

α

√
logN∞,∞(ε, φγ ◦ F , n)dε.
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Optimizing η and λ (as in the proof of the second claim of Corollary 15) leads to a bound of

E
[
n∑
t=1

E
st∼pt
〈st, `t〉 −

n∑
t=1
〈φγ(f(xt)), `t〉

]

≤ 4
√

2K2n logN∞,∞(β/2, φγ ◦ F , n) + 8
µ

logN∞,∞(β/2, φγ ◦ F , n)

+ 3e2αKn+ 12e
√
Kn

µ

∫ β

α

√
logN∞,∞(ε, φγ ◦ F , n)dε.

Since φγ is 1
γ
-Lipschitz with respect to the `∞ norm (as a coordinate-wise mapping from RK

to RK), we can upper bound in terms of the covering numbers for the original class:

E
[
n∑
t=1

E
st∼pt
〈st, `t〉 −

n∑
t=1
〈φγ(f(xt)), `t〉

]

≤ 4
√

2K2n logN∞,∞(γβ/2,F , n) + 8
µ

logN∞,∞(γβ/2,F , n)

+ 3e2αKn+ 12e
√
Kn

µ

∫ β

α

√
logN∞,∞(γε,F , n)dε.

Using a change of variables and the reparameterization α′ = αγ, β′ = βγ, the right hand side
equals

4
√

2K2n logN∞,∞(β′/2,F , n) + 8
µ

logN∞,∞(β′/2,F , n)

+ 1
γ

(
3e2αKn+ 12e

√
Kn

µ

∫ β′

α′

√
logN∞,∞(ε,F , n)dε

)
.

Lastly, via Lemma 31, we have
n∑
t=1

E
st∼pt
〈st, `t〉 ≥

n∑
t=1

E
st∼pt

∑
a∈[K] st(a)`t(a)∑

a∈[K] st(a) =
n∑
t=1

E
at∼Pt

`t(at).

Finally, the definition of the smoothed distribution P µ
t and boundedness of ` immediately

implies
n∑
t=1

E
at∼Pt

`t(at) ≥
n∑
t=1

E
at∼Pµt

`t(at)− µKn.

Proof of Proposition 19. Suppose logN∞,∞(ε,F , n) ∝ ε−p.

• When p ≥ 2, it suffices to set β = rad∞,∞(F , n), µ = (Kn)−1/(p+1)γ−p/(p+1), and
α = 1/(Knµ)1/p in Theorem 41 to obtain Õ

(
(Kn/γ)p/(p+1)

)
.

• When p ∈ (0, 2], it suffices to set α = 1/(Kn), µ = (Kn)−2/(p+4)γ−2p/(4+p), and
β = γ2/(2+p)/(Knµ)1/(2+p) in Theorem 41 to obtain Õ

(
(Kn)(p+2)/(p+4)γ−2p/(p+4)

)
.
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For the parametric case, set α = β = γ/Kn and µ =
√
d log(Kn/γ)/Kn to conclude the

bound.

Similarly, in the finite class case, set α = β = 0 and µ =
√

log|Π|/Kn.

Proof of Example 26. Let F|a = {x 7→ f(x)a | f ∈ F}. Then clearly it holds that

logN∞,∞(ε,F , n) ≤
∑
a∈[K]

logN∞(ε,F|a, n) ≤ K max
a∈[K]

logN∞(ε,F|a, n),

where have dropped the second “∞” subscript on the right-hand side to denote that this is
the covering number for a scalar-valued class. Let a? be the action that obtains the maximum
in this expression. Returning to the integral expression in Theorem 41, we have just shown
an upper bound of

3e2αKn+ 12eK
√
n

µ

∫ β

α

√
logN∞(ε,F|a? , n)dε.

For any scalar-value function class G ⊆ (X → [0, 1]), define

Rseq(G) = sup
x

E
ε

sup
g∈G

n∑
t=1

εtg(xt(ε)).

Following the proof of Lemma 9 in Rakhlin et al. (2015), by choosing β = 1 and α =
2Rseq(F|a?)/n, we may upper bound the L∞ covering number by the sequential Rademacher
complexity (via fat-shattering), to obtain

6eKRseq(F|a?) + 96
√

2eK
√

1
µ
Rseq(F|a?)

∫ 1

2Rseq(F|a? )/n

1
ε

√
log(2en/ε)dε.

Using straightforward calculation from the proof of Lemma 9 in Rakhlin et al. (2015), this is
upper bounded by

O

(
K
√
µ
Rseq(F|a?) log3/2(n/Rseq(F|a?))

)
.

Returning to the regret bound in Theorem 41, we have shown an upper bound of

O

(
K

γ
√
µ
Rseq(F|a?) log3/2(n/Rseq(F|a?)) + µKn

)
,

where we have used that logN∞(1,F|a? , n) = 0 under the boundedness assumption on F .
Setting µ ∝ (Rseq(F|a?)/(nγ))2/3 yields the result.

Proof of Example 27. This is an immediate consequence of Example 26 and that Ba-
nach spaces for which the martingale type property holds with constant β have sequential
Rademacher complexity O(

√
βn) (Srebro et al., 2011).
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11.5.6 Additional Minimax Results

Here we briefly state an analogue of Theorem 41 for the hinge loss. Note that this bound
leads to the same exponents for n as Theorem 41, but has worse dependence on the margin γ
and depends on the scale parameter B explicitly.
Theorem 45 (Contextual bandit chaining bound for hinge loss). For any fixed constants
β > α > 0, hinge loss parameter γ > 0, and smoothing parameter µ ∈ (0, 1/K] there exists
an adversarial contextual bandit strategy (Pt)t≤n with expected regret bounded as

E
[
n∑
t=1

`t(at)
]

≤ 1
K

{
inf
f∈F

E
[
n∑
t=1
〈ψγ(f(xt)), `t〉

]
+ 1
γ

√
2K2B2n logN∞,∞(β/2,F , n) + µBK2n

+ 8B
γµ

logN∞,∞(β/2,F , n) + 1
γ

(
3eαKn+ 24e

√
Kn

µ

∫ β

α

√
logN∞,∞(ε,F , n)dε

)}
,

where we recall B = supf∈F supf∈X‖f(x)‖∞.

11.6 Detailed Proofs for Algorithmic Results

11.6.1 Analysis of Hinge-LMC

This section contains the proofs of Theorem 42 and the corresponding corollaries. The proof
has many ingredients which we compartmentalize into subsections. First, in Section 11.6.2, we
analyze the sampling routine, showing that Langevin Monte Carlo can be used to generate a
sample from an approximation of the exponential weights distribution. Then, in Section 11.6.3,
we derive the regret bound for the continuous version of exponential weights. Finally, we
put the components together together, instantiate all parameters, and compute the final
regret and running time in Section 11.6.4. The corollaries are straightforward and proved
in Section 11.6.5

To begin, we restate the main theorem, with all the assumptions and the precise parameter
settings.
Theorem 46. Let F be a set of functions parameterized by a compact convex set Θ ⊂ Rd that
contains the origin-centered Euclidean ball of radius 1 and is contained within a Euclidean ball
of radius R. Assume that f(x; θ) is convex in θ for each x ∈ X , and that supx,θ ‖f(x; θ)‖∞ ≤ B,
that f(x, a; θ) is L-Lipschitz as a function of θ with respect to the `2 norm for each x, a. For
any γ, if we set

η =
√
dγ2 log(RLnK/γ)

5K2B2n
, µ =

√
1

K2n
, M =

√
n,

234



in Hinge-LMC, and further set

u = 1
n3/2LB`Rη

√
d
, λ = 1

8n1/2R3 , α = R2

N
,

N = Õ

(
R18L12n6d12 + R24L48d12

K24

)
, m = Õ

(
n3dR4L2B2

` (Kγ)−2
)
,

in each call to Projected LMC, then Hinge-LMC guarantees
n∑
t=1

E`t(at) ≤ min
θ∈Θ

n∑
t=1

E〈`t, ψγ(f(xt; θ))〉+
√
n

γ
+ 2d
Kη

log(RLnK/γ) + 10η
γ2 B

2Kn

≤ min
θ∈Θ

n∑
t=1

E〈`t, ψγ(f(xt; θ))〉+ Õ

(
B

γ

√
dn

)
.

Moreover, the running time of Hinge-LMC is Õ
(
R22L14d14B2

`n
10

K2γ2 + R28L50d14B2
`n

4

K26γ2

)
.

11.6.2 Analysis of the Sampling Routine

In this section, we show how Projected LMC can be used to generate a sample from a
distribution that is close to the exponential weights distribution. Define

F (θ) = η
t∑

τ=1
〈˜̀τ , ψγ(f(xτ ; θ))〉, P (θ) ∝ exp(−F (θ)). (11.11)

We are interested in sampling from P (θ).

Algorithm 14 Smoothed Projected Langevin Monte Carlo for (11.11)
Input: Parameters m,u, λ,N, α.
Set θ̃0 ← 0 ∈ Rd

for k = 1, . . . , N do
Sample z1, . . . , zm

iid∼ N (0, u2Id) and form the function

F̃k(θ) = 1
m

m∑
i=1

F (θ + zi) + λ

2‖θ‖
2
2.

Sample ξk ∼ N (0, Id) and update

θ̃k ← PΘ

(
θ̃k−1 −

α

2∇F̃k(θ̃k−1) +
√
αξk

)
.

end for
Return θ̃N .

Let us define the Wasserstein distance. For random variables X, Y with density µ, ν respec-
tively

W1(µ, ν) , inf
π∈Γ(µ,ν)

∫
‖X − Y ‖2dπ(X, Y ) = sup

f :Lip(f)≤1

∣∣∣∣∫ f(dµ(X)− dν(Y ))
∣∣∣∣ .
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Here Γ(µ, ν) is the set of couplings between the two densities, that is the set of joint
distributions with marginals equal to µ, ν. Lip(f) is the set of all functions that are 1-
Lipschitz with respect to `2.
Theorem 47. Let Θ ⊂ Rd be a convex set containing a Euclidean ball of radius r = 1 with
center 0, and contained within a Euclidean ball of radius R. Let f : X ×Θ→ RK

=0 be convex
in θ with fa(x; ·) being L-Lipschitz w.r.t. `2 norm for each a ∈ A. Assume ‖˜̀τ‖1 ≤ B` and
define F and P as in (11.11). Let a target accuracy τ > 0 be fixed. Then Algorithm 14 with
parameters m,N, λ, u, α ∈ poly(1/τ, d, R, η, B`, L) generates a sample from a distribution P̃
satisfying

W1(P̃ , P ) ≤ τ.

Therefore, the algorithm runs in polynomial time.

The precise values for each of the parameters m,N, u, λ, α can be found at the end of the
proof, which will lead to a setting of τ in application of the theorem.

Towards the proof, we will introduce the intermediate function F̂ (θ) = EZF (θ + Z) + λ
2‖θ‖

2
2,

where Z is a random variable with distribution N (0, u2Id). This is the randomized smoothing
technique studied by Duchi, Bartlett and Wainwright (Duchi et al., 2012). The critical
properties of this function are
Proposition 20 (Properties of F̂ ). Under the assumptions of Theorem 47, The function F̂
satisfies

1. F (θ) ≤ F̂ (θ) ≤ F (θ) + ηnB`Lu
√
d/γ + λ

2R
2.

2. F̂ (θ) is ηnB`L/γ + λR-Lipschitz with respect to the `2 norm.

3. F̂ (θ) is continuously differentiable and its gradient is ηnB`L
uγ

+ λ-Lipschitz continuous
with respect to the `2 norm.

4. F̂ (θ) is λ-strongly convex with respect to the `2 norm.

5. E∇F (θ + Z) = ∇F̂ (θ).

Proof. See Duchi et al. (2012, Lemma E.3) for the proof of all claims, except for claim 4,
which is an immediate consequence of the `2 regularization term.

Using property 1 in Proposition 20 and setting ε1 , ηnB`Lu
√
d/γ + λR2, we know that

e−ε1 exp(−F (θ) ≤ exp(−F̂ (θ)) ≤ exp(−F (θ)),

pointwise. Therefore, defining P̂ to be the distribution with density p̂(θ) = exp(−F̂ (θ))/Ẑ,
where Ẑ =

∫
exp(−F̂ (θ))dθ, we have

TV (P || P̂ ) =
∫ e−F (θ)

Z

∣∣∣∣∣∣e
−F̂ (θ)+F (θ)

Ẑ/Z
− 1

∣∣∣∣∣∣ dθ ≤ eε1 − 1 ≤ 2ε1,

for ε1 ≤ 1. This shows that P̂ approximates P well when u and λ are sufficiently small. The
next lemma further shows that the F̃k functions themselves approximate F̂ well.
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Lemma 37 (Properties of F̃k). For any fixed θ, k ∈ [N ], and constant ε2 > 0,

P
[∥∥∥∇F̂ (θ)−∇F̃k(θ)

∥∥∥
2
≥ ε2 + 2√

m
· ηnB`L

γ

]
≤ exp

(
−4ε2

2γ
2m

(ηnLB`)2

)
.

Proof of Lemma 37. Let k be fixed. Since F̃k are identically distributed for all k we will
henceforth abbreviate to F̃ .

We proceed using a crude concentration argument. Observe that by Proposition 20, E∇F̃ (θ) =
∇F̂ (θ) and moreover ∇F̃ (θ) is a sum of m i.i.d., vector-valued random variables (plus the
deterministic regularization term).

Via the Chernoff method, for any fixed θ, we have

P
[
‖∇F̃ (θ)−∇F̂ (θ)‖2 ≥ t

]
≤ inf

β>0
exp(−tβ)E exp(β‖∇F̃ (θ)−∇F̂ (θ)‖2)

Using the sum structure and symmetrizing:

≤ inf
β>0

exp(−tβ)Ez1:m E
ε

exp
(

2β
∥∥∥∥∥ 1
m

m∑
i=1

εt∇G(θ + zi)
∥∥∥∥∥

2

)
,

where G(θ) = η
∑t
τ=1〈˜̀τ , ψγ(f(xτ ; θ))〉. Condition on z1:m and let W (ε) =∥∥∥ 1

m

∑m
i=1 εi∇G(θ + zi)

∥∥∥
2
. Then for any i,

|W (ε1, . . . , εi, . . . , εm)−W (ε1, . . . ,−εi, . . . , εm)| ≤ 1
m
‖∇G(θ + zi)‖2

≤ η

m

t∑
τ=1

∥∥∥˜̀
τ

∥∥∥
1
‖∇ψγ(f(xτ ; θ + zi))a‖2

≤ ηnB`L

mγ
.

By the standard bounded differences argument (e.g. (Boucheron et al., 2013)), this implies
that W − EW is subgaussian with variance proxy σ2 = 1

4m

(
ηnB`L
γ

)2
. Furthermore, the

standard application of Jensen’s inequality implies that EW ≤ 2σ.

Returning to the upper bound, these facts together imply

E
ε

exp
(

2β
∥∥∥∥∥ 1
m

m∑
i=1

εt∇G(θ + zi)
∥∥∥∥∥

2

)
≤ exp(2β2σ2 + 4βσ).

The final bound is therefore,

P
[
‖∇F̃ (θ)−∇F̂ (θ)‖2 ≥ t

]
≤ inf

β>0
exp(−tβ + 2β2σ2 + 4βσ).

Rebinding t = t′ + 4σ for t′ ≥ 0, we have

P
[
‖∇F̃ (θ)−∇F̂ (θ)‖2 ≥ t′ + 4σ

]
≤ inf

β>0
exp(−t′β + 2β2σ2) = exp(−(t′)2/8σ2).
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Now, for the purposes of the proof, suppose we run the Projected LMC algorithm on the
function F̂ , which generates the iterate sequence θ̂0 = 0

θ̂k ← PΘ

(
θ̂k−1 −

α

2∇F̂ (θ̂k−1) +
√
αξk

)
.

Owing to the smoothness of F̂ , we may apply the analysis of Projected LMC due to Bubeck,
Eldan, and Lehec (Bubeck et al., 2018) to bound the total variation distance between the
random variable θ̂N and the distribution with density proportional to exp(−F̂ (θ)).
Theorem 48 (Bubeck et al. (2018)). Let P̂ be the distribution on Θ with density proportional
to exp(−F̂ (θ)). For any ε > 0 and with α = Θ̃(R2/N), we have TV (θ̂N , P̂ ) ≤ ε with

N ≥ Ω̃
(
R6 max{d,RηnB`L/γ +R2λ,R(ηnB`L/(uγ) + λ)}12

ε12

)
.

This specializes the result of Bubeck et al. (2018) to our setting, using the Lipschitz and
smoothness constants from Proposition 20.

Unfortunately, since we do not have access to F̂ in closed form, we cannot run the Projected
LMC algorithm on it exactly. Instead, Algorithm 14 runs LMC on the sequence of approxi-
mations F̃k and generates the iterate sequence θ̃k. The last step in the proof is to relate our
iterate sequence θ̃k to a hypothetical iterate sequence θ̂k formed by running Projected LMC
on the function F̂ .
Lemma 38. Let ε2 be fixed. Assume the conditions of Theorem 47—in particular that

m ≥ 16(ηnLB`/γ)2 log(4R/αε2)/ε2
2, α ≤ 2(ηnB`L/(uγ) + λ)−1.

Then for any k ∈ [N ] we have W1(θ̂k, θ̃k) ≤ kαε2.

Proof of Lemma 38. The proof is by induction, where the base case is obvious, since
θ̂0 = θ̃0. Now, let π?k−1 denote the optimal coupling for θ̃k−1, θ̂k−1 and extend this coupling
in the obvious way by sampling z1, . . . , zm i.i.d. and by using the same gaussian random
variable ξk in both LMC updates. Let Ek = {z1:m : ‖∇F̃ (θ̃k−1) − ∇F̂ (θ̃k−1)‖ ≤ ε2 + ε′},
where ε′ := 2√

m
· ηnB`L

γ
; this is the “good” event in which the samples provide a high-quality

approximation to the gradient at θ̃k−1. We then have

W1(θ̂k, θ̃k)

= inf
π∈Γ(θ̂k,θ̃k)

∫
‖θ̂k − θ̃k‖2dπ

≤
∫

Ez1:m‖PΘ(θ̂k−1 −
α

2∇F̂ (θ̂k−1)−
√
αξk)− PΘ(θ̃k−1 −

α

2∇F̃ (θ̃k−1)−
√
αξk)‖2dπ

?
k−1

≤
∫

Ez1:m1{Ek}‖θ̂k−1 −
α

2∇F̂ (θ̂k−1)− (θ̃k−1 −
α

2∇F̃ (θ̃k−1))‖2dπ
?
k−1 + 2R

∫
P[ECk−1]dπ?k−1

≤
∫

Ez1:m1{Ek}‖θ̂k−1 −
α

2∇F̂ (θ̂k−1)− (θ̃k−1 −
α

2∇F̃ (θ̃k−1))‖2dπ
?
k−1 + 2R exp

(
−4ε2

2γ
2m

(ηnLB`)2

)
.
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The first inequality introduces the potentially suboptimal coupling π?k−1. In the second
inequality we first use that the projection operator is contractive, and we also use that the
domain is contained in a Euclidean ball of radius R, providing a coarse upper bound on the
second term. For the third inequality, we apply the concentration argument in Lemma 37.
Working just with the first term, using the event in the indicator, we have∫

Ez1:m1{Ek}‖θ̂k−1 −
α

2∇F̂ (θ̂k−1)− (θ̃k−1 −
α

2∇F̃ (θ̃k−1))‖2dπ
?
k−1

≤
∫
‖θ̂k−1 −

α

2∇F̂ (θ̂k−1)− (θ̃k−1 −
α

2∇F̂ (θ̃k−1))‖2dπ
?
k−1 + α(ε2 + ε′)

2 .

Now, observe that we are performing one step of gradient descent on F̂ from two different
starting points, θ̂k−1 and θ̃k−1. Moreover, we know that F̂ is smooth and strongly convex,
which implies that the gradient descent update is contractive. Thus we will be able to upper
bound the first term by W1(θ̂k−1, θ̃k−1), which will lead to the result.

Here is the argument. Consider two arbitrary points θ, θ′ ∈ Θ. Let G : θ → θ − α/2∇F̂ (θ)
be a vector valued function, and observe that the Jacobian is I − α/2∇2F̂ (θ). By the mean
value theorem, there exists θ′′ such that

‖θ − α

2∇F̂ (θ)− (θ′ − α

2∇F̂ (θ′))‖2 ≤ ‖(I − α/2∇2F̂ (θ′′))(θ − θ′)‖2

≤ ‖I − α/2∇2F̂ (θ′′)‖σ‖θ − θ′‖2.

Now, since F̂ is λ-strongly convex and ηnB`L/u+ λ smooth, we know that all eigenvalues of
∇2F̂ (θ′′) are in the interval [λ, ηnB`L/(uγ)+λ]. Therefore, if α ≤ 2(ηnB`L/(uγ)+λ)−1 ≤ 1/λ,
the spectral norm term here is at most 1, implying that gradient descent is contractive. Thus,
we get

W1(θ̂k, θ̃k) ≤
∫
‖θ̂k−1 − θ̃k−1‖2dπ

?
k−1 + α(ε2 + ε′)

2 + 2R exp
(
−4ε2

2γ
2m

(ηnLB`)2

)

≤ W1(θ̂k−1, θ̃k−1) + α

2 ε2 + α√
m
· ηnB`L

γ
+ 2R exp

(
−4ε2

2γ
2m

(ηnLB`)2

)
.

The choice of m ensures that the second and third term together are at most αε2, from which
the result follows.
Fact 2. For any two distributions µ, ν on Θ, we have

W1(µ, ν) ≤ R · TV (µ, ν).

Proof. We use the coupling characterization of the total variation distance:

W1(µ, ν) = inf
π

∫
‖θ − θ′‖2dπ ≤ diam(Θ) inf

π
Pπ[θ 6= θ′] ≤ R · TV (µ, ν).

Proof of Theorem 47. By the triangle inequality and 2 we have

W1(θ̃N , P ) ≤ W1(θ̃N , θ̂N) +R ·
(
TV (θ̂N , P̂ ) + TV (P̂ , P )

)
.
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The first term here is the Wasserstein distance between our true iterates θ̃N and the idealized
iterates from running LMC on F̂ , which is controlled by Lemma 38. The second is the
total variation distance between the idealized iterates and the smoothed density P̂ , which is
controlled in Theorem 48. Finally, the third term is the approximation error between the
smoothed density P̂ and the true, non-smooth one P . Together, for any choice of ε > 0 and
ε2 > 0 we obtain the bound

W1(θ̃N , P ) ≤ Nαε2 +Rε+ 2R(ηnB`Lu
√
d/γ + λR2), (11.12)

under the requirements

N ≥ c0R
6 max{d,RηnB`L/γ +R2λ,R(ηnB`L/(uγ) + λ)}12

ε12 , (11.13)

m ≥ 16(ηnLB`/γ)2 log(4R/αε2)
ε2

2
.

There are also two requirements on α, one arising from Theorem 48 and the other from
Lemma 38. These are:

α ≤ 2(ηnB`L/(uγ) + λ)−1, and α = c1R
2/N, (11.14)

for any constant c1.

Returning to the error bound, if we set

u = τ

8RηnB`L
√
d
, and λ = τ

8R3 ,

the last term in (11.12) is at most τ/2.

We will make the choice α = c1R
2/N . In this case, the values for u and λ above, combined

with the inequality (11.14) give the constraint

N ≥ 2c1R
2 ·
(

8(ηnLB`)2R
√
d

γτ
+ τ

8R2

)
. (11.15)

Now for the first term in (11.12), plug in the choice α = c1R
2/N and set ε2 = τ/(4c1R

2) so
that this term is at most τ/4. For the second term, set ε = τ/(4R) so that this term is also
at most τ/4. With these choices, the requirements on m and N become:

1) m ≥ 64c2
1R

4(ηnB`/γ)2 log(τ/(16RN))
τ 2 .

2) N ≥ c′0R
18 max{d, (RηnB`L/γ)2

√
d/τ}12/τ 12.

Note that the first constraint (11.13) clearly implies the second constraint (11.15), and this
proves the theorem.
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11.6.3 Continuous Exponential Weights.

The focus of this section is Lemma 39, which analyzes a continuous version of the
Hedge/exponential weights algorithms in the full information setting. This lemma ap-
pears in various forms in several places, e.g. Cesa-Bianchi and Lugosi (2006). For the setup,
consider an online learning problem with a parametric benchmark class F = {f(·; θ) | θ ∈ Θ}
where f(·; θ) ∈ (X → RK

=0) and further assume that Θ ∈ Rd contains the centered Euclidean
ball of radius r = 1 and is contained in the Euclidean ball of radius R. Finally, assume
that f(x; ·)a is L-Lipschitz with respect to `2 norm in θ for all x ∈ X . On each round t an
adversary chooses a context xt ∈ X and a loss vector `t ∈ RK

+ , the learner then choose a
distribution pt ∈ ∆(F) and suffers loss:

Ef∼pt〈`t, ψγ(f(xt))〉.

The entire loss vector `t is then revealed to the learner. Here, performance is measured via
regret:

Regn(n,F) ,
n∑
t=1

Ef∼pt〈`t, ψγ(f(xt))〉 − inf
f∈F

n∑
t=1
〈`t, ψγ(f(xt))〉.

Our algorithm is a continuous version of exponential weights. Starting with w0(f) , 0, we
perform the updates:

pt(f) = exp(−ηwt(f))∫
F exp(−ηwt(f))dλ(f) , and wt+1(f) = wt(f) + 〈`t, ψγ(f(xt))〉.

Here η is the learning rate and λ is the Lebesgue measure on F (identifying elements f ∈ F
with their representatives θ ∈ Rd).

With these definitions, the continuous Hedge algorithm enjoys the following guarantee.
Lemma 39. Assume that the losses `t satisfy ‖`t‖∞ ≤ B`, Θ ⊂ Rd is contained within the
Euclidean ball of radius R, and f(x; ·)a is L-Lipschitz continuous in the third argument with
respect to `2. Let the margin parameter γ be fixed. Then the continuous Hedge algorithm
with learning rate η > 0 enjoys the following regret guarantee:

Regret(n,F) ≤ inf
ε>0

{
nKB`ε

γ
+ d

η
log(RL/ε) + η

2

n∑
t=1

Ef∼pt〈`t, ψγ(f(xt))〉2
}
.

Proof. Following the standard analysis for continuous Hedge (e.g. Lemma 10 in Narayanan
and Rakhlin (2017)), we know that the regret to some benchmark distribution Q ∈ ∆(F) is

n∑
t=1

(Ef∼pt − Ef∼Q)(〈`t, ψγ(f(xt))〉 = KL(Q || p0)−KL(Q || pn)
η

+ 1
η

n∑
t=1

KL(pt−1 || pt).
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For the KL terms, using the standard variational representation, we have

KL(pt−1 || pt) = logEf∼pt−1 exp
(
−η
〈
`t, ψ

γ(f(xt))− Ef∼pt−1ψ
γ(f(xt))

〉)

≤ log
1 + η2

2 Ef∼pt−1

〈
`t, ψ

γ(f(xt))− Ef∼pt−1ψ
γ(f(xt))

〉2


≤ η2

2 Ef∼pt−1〈`t, ψγ(f(xt))〉2.

Here the first inequality is e−x ≤ 1− x+ x2/2, using that the term inside the exponential is
centered. The second inequality is log(1 + x) ≤ x.

Using non-negativity of KL, we only have to worry about the KL(Q || p0) term. Let f ? be
the minimizer of the cumulative hinge loss. Let θ? ∈ Θ be a representative for f ? and let Q
be the uniform distribution on Fε(θ?, x1:n) , {θ : maxt∈[n] ‖f(xt; θ)− f(xt; θ?)‖∞ ≤ ε}, then
we have that KL(Q || p0) is equal to

∫
f
q(f) log(q(f)/p0(f))dλ(f) =

∫
dQ(f) · log

∫
F dλ(f)∫
Fε dλ(f) = log Vol(F)

Vol(Fε(θ?, x1:n)) ,

where Vol(S) denotes volume under the Lebesgue integral. We know that Vol(Θ) ≤ cdR
d

where cd is the Lebesgue volume of the unit Euclidean ball and R is the radius of the ball
containing Θ, and so we must lower bound the volume of Fε(f ?, x1:n). For this step, observe
that by the Lipschitz-property of f ,

sup
x∈X
‖f(x; θ)− f(x; θ?)‖∞ ≤ L‖θ − θ?‖2,

and hence Fε(θ?, x1:n) ⊃ B2(θ?, ε/L). Thus the volume ratio is

Vol(F)
Vol(Fε(θ?, x1:n)) ≤

cdR
d

cd(ε/L)d = (RL/ε)d.

Finally, using the fact that the hinge surrogate is 1/γ-Lipschitz, we know that
n∑
t=1

Ef∼Q〈`n, ψγ(f(xt))− ψγ(f ?(xt))〉 ≤ nB` sup
t∈[n],f∈supp(Q)

‖ψγ(f(xt))− ψγ(f ?(xt))‖1

≤ nKB`ε

γ
.

11.6.4 From Full Information to Bandits.

We now combine the results of Section 11.6.2 and Section 11.6.3 to give the final guarantee
for Hinge-LMC.
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We begin by translating the regret bound in Lemma 39, followed by many steps of approxi-
mation. At round t, let Pt denote the Hedge distribution on Θ using the losses ˜̀1:t−1. Let P̃t
denote the distribution from which θt ∈ Θ is sampled in Algorithm 14.

Let pt ∈ ∆(A) denote the induced distributions on actions induced by Pt, i.e. the distribution
induced by the process θ ∼ Pt, pt(a) ∝ ψγ(f(xt; θ)). Likewise, let ∼ pt ∈ ∆(A) be the
distribution induced by θ ∼ P̃t, p̃t(a) ∝ ψγ(f(xt; θ)); in this notation p̃µt is precisely the
distribution from which actions are sampled in Algorithm 12.

Recall that we use µ in the superscript to denote smoothing (e.g. pµt ). Let mt denote the
random variable sampled at round t to approximate the importance weight.

We also let ˆ̀
t(a) = `t(a)

p̃µt (a)1{at = a} denote estimated losses under the true importance weights,
which are not explicitly used by Algorithm 12 but are used in the analysis.

Let 1a ∈ RK be the vector with 1 at coordinate a and 0 at all other coordinates.

Proof of Theorem 46. The thrust of this proof is to show that the full information bound
in Lemma 39 does not degrade significantly under importance weighting, nor does it degrade
under the approximate LMC implementation of continuous exponential weights.
Variance control Controlling the variance term in Lemma 39 requires an application
of Lemma 32. After taking conditional expectations, the variance term is

n∑
t=1

Eθ∼PtEat∼p̃µt Emt〈˜̀t, ψ
γ(f(xt; θ))〉2 =

n∑
t=1

Es∼PtEat∼p̃µt Emtm
2
t 〈`t(at)1at , s〉2.

Here we are identifying s with ψγ(f(xt; θ)) and marginalizing out θ in the outermost expecta-
tion. Note that this is the same definition of s as in Lemma 32.

First let us handle the mt random variable. Note that conditional on everything up to round
t and at, the variable mt is distributed according to a geometric distribution with mean
p̃µt (at), truncated at M . It is straightforward (cf. Neu and Bartók (2013)) to show that mt

is stochastically dominated by a geometric random variable with mean 1
p̃µt (at) and hence the

second moment of this random variable is at most 2
p̃µt (at)2 . Thus, we are left with

≤ 2
n∑
t=1

Es∼PtEat∼p̃µt
1

p̃µt (at)2 〈`t(at)1at , s〉
2

= 2
n∑
t=1

Es∼PtEat∼p̃µt 〈ˆ̀t, s〉
2

≤ 2
n∑
t=1

(Es∼P̃t − Es∼Pt)Eat∼p̃µt 〈ˆ̀t, s〉
2 + Es∼P̃tEat∼p̃µt 〈ˆ̀t, s〉

2.

We can apply Lemma 32 on the second term, since the only condition for the lemma is that
the action distribution is induced from the distribution in the outer expectation. It follows
that this term is bounded as

n∑
t=1

Es∼P̃tEat∼p̃µt 〈ˆ̀t, s〉
2 ≤ nK2(1 +B/γ)2.
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For the first term, evaluating the inner expectation, using the fact that p̃µt (a) ≥ µ and
applying the Lipschitz properties of ψγ(·), f(x; ·) (in particular that f(x; ·) is L-Lipschitz
with respect to `2 and that the Wasserstein distance we work with is defined relative to `2)
we have

(Es∼P̃t − Es∼Pt)Eat∼p̃µt 〈ˆ̀t, s〉
2 =

∑
a

(Eθ∼P̃t − Eθ∼Pt)
`2
t (a)
p̃µt (a)ψ

γ(f(xt; θ)a)2

≤ 2(1 +B/γ)KL
γµ

sup
g,‖g‖Lip≤1

∣∣∣∣∫ g(dPt − dP̃t)
∣∣∣∣

= 2(1 +B/γ)KL
γµ

W1(Pt, P̃t).

Finally, using the Wasserstein guarantee W1(Pt, P̃t) ≤ τ from Theorem 47, we conclude that
the cumulative variance term is upper bounded as

n∑
t=1

E〈˜̀t, ψγ(f(xt; θ))〉2 ≤
4(1 +B/γ)KnLτ

γµ
+ 2(1 +B/γ)2K2n.

Bounding regret We first relate the cumulative loss under Algorithm 12 to the cumulative
loss of continuous exponential weights. Observe that

n∑
t=1
〈`t, p̃µt 〉 ≤ µKn+

n∑
t=1
〈`t, p̃t〉

≤ µKn+ 1
K

n∑
t=1

Eθ∼P̃t〈`t, ψ
γ(f(xt; θ))〉

≤ µKn+ nLτ

γ
+ 1
K

n∑
t=1

Eθ∼Pt〈`t, ψγ(f(xt; θ))〉.

This first inequality is a straightforward consequence of smoothing, while the second is a
direct application of Lemma 31.

The third inequality is based on the fact that 〈`t, ψγ(f(xt; θ))〉 is KL/γ-Lipschitz in θ with
respect to `2 norm under our assumptions. This step also uses the Wasserstein guarantee
in Theorem 47 which produces the approximation factor τ .

Following the analysis in Neu and Bartók (2013) and using the boundedness of ψγ, the bias
introduced due to using geometric resampling with truncation at M instead of exact inverse
propensity scores is

n∑
t=1

Eθ∼Pt〈`t, ψγ(f(xt; θ))〉 ≤ Ea1:n,m1:n

n∑
t=1

Eθ∼Pt〈˜̀t, ψγ(f(xt; θ))〉+ n(1 +B/γ)
eM

.

For the remaining term, we apply Lemma 39 with ε = γ/(nKM), since M is an upper bound
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on the norm
∥∥∥˜̀
t

∥∥∥
1

of the losses to the full information algorithm.

Ea1:n,m1:n

n∑
t=1

Eθ∼Pt〈˜̀t, ψγ(f(xt; θ))〉

≤ E inf
θ∈Θ

n∑
t=1
〈˜̀t, ψγ(f(xt, θ))〉+ 1 + d

η
log(RLnKM/γ) + η

((1 +B/γ)KnLτ
γµ

+ (1 +B/γ)2K2n

)
.

The first term here is the benchmark we want to compare to, since E inf(·) ≤ inf E[·] and so
the regret contains several terms:

µKn+ nLτ

γ
+ n(1 +B/γ)

eMK
+ 1
K

+ d

Kη
log(RLnKM/γ)

+ η

2K

(
2(1 +B/γ)KnLτ

γµ
+ 4(1 +B/γ)2K2n

)
,

which simplifies to an upper bound of

≤ µKn+ nLτ

γ
+ n(1 +B/γ)

eMK
+ 1
K

+ d

Kη
log(RLnKM/γ) + 2η

Kγ2

(
BKnLτ

µ
+ 4B2K2n

)
.

Here we have used the assumption B/γ ≥ 1. We will simplify the expression to obtain an
Õ(
√
dKn)-type bound, first set µ = 1/(K

√
n),M =

√
n and τ =

√
1/(nL2). This gives

2
√
n+ 2B

γ

√
n+ 2d

Kη
log(RLnK/γ) + 2η

Kγ2

(
BK2n+ 4B2K2n

)
≤ O(B

√
n/γ) + 2d

Kη
log(RLnK/γ) + 10η

γ2 B
2Kn.

Finally set η =
√

dγ2 log(RLnK/γ)
5K2B2n

to get

O(
√
n/γ) +O

(
B

γ

√
dn log(RLnK/γ)

)
= Õ(B

√
dn/γ).

This concludes the proof of the regret bound.

Running time calculation. At each round make M+1 calls to the LMC sampling routine
for a total of O(n3/2) calls across all rounds. We now bound the running time for a single call.

We always use parameter τ =
√

1/(nL2) and we know ‖˜̀‖1 ≤ 1/µ = K
√
n and η = Õ(

√
d

K2n
).

Plugging into the parameter choices at the end of the proof of Theorem 47, we must sample

m = Õ(n3dR4L2B2
` /(Kγ)2)

samples from a gaussian distribution on each iteration, and the number of iterations to
generate a single sample is:

N = Õ

(
R18L12n6d12 + R24L48d12

K24

)
.
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Therefore, the total running time across all rounds is

Õ

(
R22L14d14B2

`n
10

K2γ2 + R28L50d14B2
`n

4

K26γ2

)
.

11.6.5 Proofs for Corollaries

Corollary 13 is an immediate consequence of Theorem 42. For Corollary 14, we ap-
ply Lemma 33, since θ? ∈ Θ satsifies the conditions of the lemma pointwise. Thus

K−1E〈`t, ψγ(f(xt; θ?))〉 = K−1E[〈¯̀t, ψγ(f(xt; θ?))〉 | xt] = E[min
a

¯̀
t(a)|xt].

Therefore, letting a?t denote the optimal action minimizing ¯̀
t, we obtain the expected regret

bound
n∑
t=1

E[〈¯̀t, at − a?t 〉] ≤ Õ((B/γ)
√
dn).

11.6.6 Analysis of SmoothFTL

Recall we are in the stochastic setting, and let D denote the distribution over (X ,RK
+ )

generating the data.

The bulk of the analysis is the following uniform convergence lemma, which is based on
chaining for the function class F . Recall that N∞,∞(ε,F) is the L∞/`∞ covering number
from Definition 17.
Lemma 40. Fix a predictor f̂ and let {xi, ai, `i(ai)}ni=1 be a dataset of n samples, Suppose
that (xi, `i) are drawn i.i.d. from some distribution D and ai is sampled from pi = (1 −
Kµ)πhingef̂(xi) + µ for some fixed predictor f̂ . Define R̂ψ

n(f) = 1
n

∑n
i=1〈ˆ̀i, ψγ(f(xi))〉, where

ˆ̀
i is the importance-weighted loss. Then it holds that:

E sup
f∈F
|Rψ(f)− R̂ψ

n(f)〉|

≤ 1
γ

inf
β≥0

{
2Kβ + 12

∫ 2

β

(√
2K
nµ

log(nN∞,∞(ε,F , n)) + 3 log(nN∞,∞(ε,F , n))
nµ

)
dε

}
.

Proof of Lemma 40. Note that since the data collection policy f̂ is fixed, and since we are
in the stochastic setting with (xi, `i) ∼ D, the samples {xi, ai, `i(ai)}ni=1 are i.i.d. Consequently,
we can apply the standard symmetrization upper bound for uniform convergence. Beginning
with

Ex1:n,a1:n,`1:n sup
f∈F

[
Rψ(f)− R̂ψ

n(f)
]
,
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we introduce a second “ghost” dataset of samples τ = n+ 1, . . . , 2n via Jensen’s inequality.

≤ Ex1:2n,a1:2n,`1:2n sup
f∈F

1
n

2n∑
τ=n+1

〈ˆ̀τ , ψγ(f(xτ ))〉 −
1
n

n∑
τ=1
〈ˆ̀τ , ψγ(f(xτ ))〉.

Introducing Rademacher random variables and splitting the supremum:

≤ 2Ex1:n,a1:n,`1:n,ε1:n sup
f∈F

1
n

n∑
τ=1

ετ 〈ˆ̀τ , ψγ(f(xτ ))〉.

Now condition on x1:n and define a sequence βi = 21−i for i ∈ {0, 1, 2, . . . , N}, where N is
such that βN+1 ≥ β ≥ βN+2 for the value of β in the lemma statement. For each βi let Vi be
a (classical) L∞/`∞ cover for f at scale βi on x1:n, that is

∀f ∈ F ,∀i, ∃v ∈ Vi s.t. max
t∈[n]
‖f(xt)− vt‖∞ ≤ βi.

We can always ensure |Vi| ≤ N∞,∞(βi,F , n) and since ‖f(x)‖∞ ≤ 1, we know that
N∞,∞(β0,F , n) ≤ 1. Now, letting v(i)(f) denote the covering element for f at scale βi,
we have

Ea1:n,`1:n,ε1:n sup
f∈F

1
n

n∑
τ=1

ετ 〈ˆ̀τ , ψγ(f(xτ ))〉

≤ Ea1:n,`1:n,ε1:n sup
f∈F

1
n

n∑
τ=1

ετ 〈ˆ̀τ , ψγ(f(xτ ))− ψγ(v(N)
τ (f))〉

+
N∑
i=1

sup
f∈F

1
n

n∑
τ=1

ετ 〈ˆ̀τ , ψγ(v(i)
τ (f))− ψγ(v(i−1)

τ (f))〉

+ sup
f∈F

1
n

n∑
τ=1

ετ 〈ˆ̀τ , ψγ(v(0)
τ (f))〉.

Since |V0| ≤ 1, the expected value of the third term is zero. The remaining work is to bound
the first and second terms.

For the first term note that by Hölder’s inequality, for any f ∈ F ,

1
n

n∑
τ=1

ετ 〈ˆ̀τ , ψγ(f(xτ ))− ψγ(v(N)
τ (f))〉 ≤ 1

n

n∑
τ=1
‖ˆ̀τ‖1‖ψγ(f(xτ ))− ψγ(v(N)

τ (f))‖∞

≤ βN
γ

1
n

n∑
τ=1
‖ˆ̀τ‖1,

since ψγ is 1/γ-Lipschitz. Thus for the first term, we have

Ea1:n,`1:n,ε1:n sup
f∈F

1
n

n∑
τ=1

ετ 〈ˆ̀τ , ψγ(f(xτ ))− ψγ(v(N)
τ (xτ ))〉 ≤

βN
γ
Ea1:n,`1:n

1
n

n∑
τ=1
‖ˆ̀τ‖1 ≤

βNK

γ
.

Note that there is no dependence on the smoothing parameter µ here.
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For the second term, let us denote the ith term in the summation by

Ea1:n,`1:n,ε1:n sup
f∈F

1
n

n∑
τ=1

ετ 〈ˆ̀τ , ψγ(v(i)
τ (f))− ψγ(v(i−1)

τ (f))〉︸ ︷︷ ︸
, Ei

.

We control Ei using Bernstein’s inequality and a union bound. First, note that the individual
elements in the sum satisfy the deterministic bound

|ετ 〈ˆ̀τ , ψγ(v(i)
τ (f))− ψγ(v(i−1)

τ (f))〉| ≤ 3βi
µγ

, (11.16)

and the variance bound,

E〈ˆ̀τ , ψγ(v(i)
τ (f))− ψγ(v(i−1)

τ (f))〉2 ≤
∑
a

Eaτ
1{aτ = a}
pτ (a)2 (ψγ(v(i)

τ (f)a)− ψγ(v(i−1)
τ (f)a))2

≤
∑
a

1
µ

(3βi/γ)2 = 9β2
iK

µγ2 . (11.17)

Here we are using that v(i)(f) and v(i−1)(f) are the covering elements for f , Lipschitzness of
ψγ, and the definition of the importance weighted loss ˆ̀

τ .

Using the bounds (11.16) and (11.17), Bernstein’s inequality (e.g. Boucheron et al. (2013),
Theorem 2.9) implies that for any δ ∈ (0, 1),

1
n

n∑
τ=1

ετ 〈ˆ̀τ , ψγ(v(i)
τ (f))− ψγ(v(i−1)

τ (f))〉 ≤ 6

√√√√ β2
iK

nµγ2 log(1/δ) + 6βi
nµγ

log(1/δ),

with probability at least 1 − δ. The important point here is that 1/(nµ) appears in the
square root, as opposed to 1/(nµ2). Via a union bound, we know that for any δ ∈ (0, 1), with
probability at least 1− δ,

sup
f

1
n

n∑
τ=1

ετ 〈ˆ̀τ , ψγ(v(i)
τ (f))− ψγ(v(i−1)

τ (f))〉

≤ 6

√√√√ β2
iK

nµγ2 log(|Vi||Vi−1|/δ) + 6βi
nµγ

log(|Vi||Vi−1|/δ)

≤ 6βi
γ

(√
2K
nµ

log(|Vi|/δ) + 2 log(|Vi|/δ)
nµ

)
,

since |Vi−1| ≤ |Vi|. Now, recalling the shorthand definition Ei

Ea1:n,`1:n,ε1:nEi ≤ inf
ζ
E1{Ei ≤ ζ} · ζ + E1{Ei > ζ} · 3βi

µγ

≤ inf
δ∈(0,1)

6βi
γ

(√
2K
nµ

log(|Vi|/δ) + 2 log(|Vi|/δ)
nµ

)
+ 3βiδ

µγ
.
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Choosing δ = 1/n:

≤ 6βi
γ

(√
2K
nµ

log(n|Vi|) + 3 log(n|Vi|)
nµ

)
.

Thus, the second term in the chaining decomposition is

6
γ

N∑
i=1

βi

(√
2K
nµ

log(n|Vi|) + 3 log(n|Vi|)
nµ

)

= 12
γ

N∑
i=1

(βi − βi+1)
(√

2K
nµ

log(n|Vi|) + 3 log(n|Vi|)
nµ

)

≤ 12
γ

∫ β0

βN+1

(√
2K
nµ

log(nN∞,∞(β,F)) + 3 log(nN∞,∞(β,F))
nµ

)
dβ.

This concludes the uniform deviation statement. Exactly the same argument applies to the
other tail, so the bound holds on the absolute value.

Proof of Theorem 43. Let us denote the right hand side of Lemma 40, when the dataset
is size n, as ∆n. Define,

f ? = arg min
f∈F

E〈`, ψγ(f(x))〉,

Since the mth epoch proceeds for nm , 2m rounds, and the predictor that we use in the mth

epoch is the ERM on all of the data from the (m− 1)st epoch, the expected cumulative hinge
regret for the mth epoch is 2m ·

(
ERψ(f̂m−1)−Rψ(f ?)

)
. Using the optimality guarantee for

ERM, this is at most

2m ·
ERψ(f̂m−1)− 1

nm−1

2nm−1−1∑
τ=nm−1

〈ˆ̀τ , ψγ(f̂m−1(xτ ))〉


+ 2m
 1
nm−1

2nm−1−1∑
τ=nm−1

〈ˆ̀τ , ψγ(f ?(xτ ))−Rψ(f ?)


≤ 2m+1E sup
f

∣∣∣Rψ(f)− R̂ψ
nm−1(f)

∣∣∣ .
Using the guarantee from Lemma 40:

≤ 2m+1∆nm−1 . (11.18)

Summing this bound over all rounds, the cumulative expected regret after the zero-th epoch
is ∑log2(n)

m=1 2m+1∆nm−1 . The zero-th epoch contributes 1/γ to the regret, which will be lower
order. This gives the following upper bound on the cumulative expected hinge loss regret.

Regn(n,F) ≤
log2(n)∑
m=1

2m+1∆nm−1 ≤
4
γ

log2(n)∑
m=1

Cm,
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where Cm is defined by

inf
β>0

{
nmKβ + 12 · 2m−1 ·

∫ 2B

β

(√
2K

nm−1µ
log(nm−1N∞,∞(ε,F)) + 3 log(nm−1N∞,∞(ε,F))

nm−1µ

)
dε

}
.

From this definition we have an immediate upper bound of

Regn(n,F)

≤ 4
γ

inf
β>0

{
Knβ + 12 log2(n) ·

∫ 2B

β

(√
2Kn
µ

log(nN∞,∞(ε,F)) + 3 log(nN∞,∞(ε,F))
µ

)
dε

}
=: C.

Let zt = f̂m−1(xt) for each time t in epoch m. We have just shown
n∑
t=1

E〈`t, ψγ(zt)〉 ≤ n · E〈`, ψγ(f ?(x))〉+ C.

Using Lemma 31, this implies
n∑
t=1

E〈`t, πhinge(zt)〉 ≤
n

K
· E〈`, ψγ(f ?(x))〉+ C

K
.

Finally since pt = (1−Kµ)πhinge(zt) + µ and ‖`t‖∞ ≤ 1, this implies the bound
n∑
t=1

E `t(at) ≤
n

K
· E〈`, ψγ(f ?(x))〉+ C

K
+ µKn︸ ︷︷ ︸
=: C′

.

We proceed to bound the final regret C ′ under the specific covering number behavior assumed
in the theorem statement. Assume that log(N∞,∞(ε,F)) ≤ ε−p for some p > 2. Omitting
the log(n) additive terms, which will contribute O(Bγ−1

√
Kn log(n)/µ+Bγ−1 log(n)/µ) to

the overall regret, the bound is now

µKn+ 1
γK

(
inf
β>0

4Knβ + 12 log2(n) ·
∫ 2

β

√
2Kn
µεp

dε+ 36 log2(n) ·
∫ 2

β

1
µεp

dε

)
.

Choosing β = (Knµ)−1/p, this bound becomes

O

(
µKn+ 1

γK
log(n)(Kn)1−1/pµ−1/p

)
.

Finally, we choose µ = γ−
p
p+1n−

1
p+1K−1, leading to a final bound of

O
(
(n/γ)

p
p+1
)
.
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11.6.7 SmoothFTL for Lipschitz CB

Here we analyze SmoothFTL in a stochastic Lipschitz contextual bandit setting. To
describe the setting, let X be a metric space endowed with metric ρ and with covering
dimension p. This latter fact means that for each 0 < ε ≤ 1, X can be covered using at
most CX ε−p balls of radius ε. Let A be a finite set of K actions. In this section, we define
the benchmark class G ⊂ (X → ∆(A)) to be the set of 1-Lipschitz functions, meaning
that ‖g(x)− g(x′)‖1 ≤ ρ(x, x′) for all g, x, x′ (The choice of `1 norm is natural since we are
operating over the simplex).

We focus on the stochastic setting where there is a distribution D over X × [0, 1]K . At
each round (xt, `t) ∼ D is drawn and xt is presented to the learner. The learner chooses a
distribution pt ∈ ∆(A), samples an action at ∈ A from pt, and observes the loss `t(at). We
measure regret via

Regn(n,G) =
n∑
t=1

E`t(at)− inf
g∈G

nE〈g(x), `〉.

In this setting, SmoothFTL takes the following form. After the mth epoch, we choose a
function ĝm by solving the empirical risk minimization (ERM) problem

ĝm = arg min
g∈G

2nm−1∑
τ=nm1

〈ˆ̀τ , g(xτ )〉,

where ˆ̀
τ is the importance weighted loss. Then, we use ĝm for all the rounds in the subsequent

epoch, which means that after observing xt, we set pt(a) = (1−Kµ)ĝm(xt, a) +µ. We sample
at ∼ pt, observe `t(at) and use the standard importance weighting scheme:

ˆ̀
t(a) = `t(at)1{a = at}

pt(a) .

For this algorithm, we have the following theorem.
Theorem 49. SmoothFTL in the Lipschitz CB setting enjoys a regret of Õ((Kn)

p
p+1 ).

This theorem improves upon the recent result of Cesa-Bianchi et al. (2017), who obtain
Õ(n

p+1
p+2 ) in this setting.

Proof. We are in a position to apply Lemma 40. The main difference is that there is no
margin parameter, since our functions are 1-Lipschitz, instead of 1/γ-Lipschitz after applying
the surrogate loss. The `∞-metric entropy at scale ε is CX ε−p up to polynomial factors in K
and logarithmic factors, and so in the mth epoch the ERM has sub-optimality (see (11.18))
at most

Õ

(
inf
β
Kβ +

∫ 1

β

√
Kβ−p

nm−1µ
+ β−p

nm−1µ

)
,
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where Õ hides dependence on CX . Following the argument in the proof of Theorem 43, the
overall regret is then

Regn(n,G) = Õ

(
µKn+ inf

β
nKβ +

∫ 1

β

√
nKβ−p

µ
+ β−p

µ

)
.

Set β = (nKµ)−1/p and then µ = (nK)
−1
p+1 now to obtain the result.

In principle our technique can be further extended to the setting where the action space is
also a general metric space, and the losses are Lipschitz, which is the more general setting
addressed by Cesa-Bianchi et al. (2017). If the action space has covering dimension pA then
we discretize the action space to resolution ε, set K = ε−pA in the above argument, and
balance ε with an additional nε factor that we pay for discretization. This is the approach
used in Cesa-Bianchi et al. (2017) to obtain n

p+pA+1
p+pA+2 . Unfortunately, our argument above

obtains a somewhat poor dependence on K (K
p
p+1 as opposed to K

1
p+1 , which is more

natural). Consequently, the argument produces a bound of Õ(n
p+ppA
p+ppA+1 ) which only improves

on Cesa-Bianchi et al. (2017) when pA ≤ 1/(p− 1).

11.7 Chapter Notes

This chapter is based on Foster et al. (2018b).

Detailed Discussion of Related Work Contextual bandit learning has been the subject
of intense investigation over the past decade. The most natural categorization of these
works is between parametric, realizability-based, and agnostic approaches. Parametric
methods (cf. Abbasi-Yadkori et al. (2011); Chu et al. (2011)) typically assume a (generalized)
linear relationship between the losses and the contexts/actions. Realizability-based methods
generalize parametric methods by assuming the losses are predictable by some abstract
regression class (Agarwal et al., 2012; Foster et al., 2018a). Agnostic approaches (cf. Auer
et al. (2002b); Langford and Zhang (2008); Agarwal et al. (2014); Rakhlin and Sridharan
(2016a); Syrgkanis et al. (2016)) avoid realizability assumptions and instead compete with VC-
type policy classes for statistical tractability. Our work contributes to all of these directions,
as our margin bounds apply to the agnostic adversarial setting and yield true regret bounds
under realizability assumptions.

A special case of contextual bandits is bandit multiclass prediction, where the loss vector is
zero for one action and one for all others (Kakade et al., 2008). A notable line of research
derives surrogate regret bounds for this setting when the benchmark regressor class F consists
of linear functions of the context (Kakade et al., 2008; Hazan and Kale, 2011; Beygelzimer
et al., 2017; Foster et al., 2018b). Our work contributes to this line in two ways: we derive
surrogate regret bounds and efficient algorithms beyond linear/parametric classes, and we
consider the more general contextual bandit setting.
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Our information-theoretic results on achievability are similar in spirit those of Daniely and
Helbertal (2013), who derive tight generic bounds for bandit multiclass prediction in terms of
the Littlestone dimension. This result is incomparable to our own: their bounds are on the
0/1 loss regret directly rather than surrogate regret, but the Littlestone dimension is not a
tight complexity measure for real-valued function classes in agnostic settings, which is the
focusof the present work.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 5

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436,
2015. 5

262



Erich L Lehmann and George Casella. Theory of point estimation. Springer Science &
Business Media, 2006. 6, 21

Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach
to personalized news article recommendation. In Proceedings of the 19th international
conference on World wide web, pages 661–670. ACM, 2010. 12, 27, 200

Tengyuan Liang, Alexander Rakhlin, and Karthik Sridharan. Learning with square loss:
Localization through offset rademacher complexity. In Proceedings of The 28th Conference
on Learning Theory, pages 1260–1285, 2015. 79

Elliott H Lieb. Convex trace functions and the wigner-yanase-dyson conjecture. Advances in
Mathematics, 11(3):267–288, 1973. 41

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015. 5

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information
and computation, 108(2):212–261, 1994. 46

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of
training neural networks. In Advances in Neural Information Processing Systems, pages
855–863, 2014. 78
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