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Adaptive Online Learning
Uniform Regret Bound

Regn(data1:n,model) ≤ B(n)

Adaptive Regret Bound

Regn(data1:n,model) ≤ B(data1:n,model)

• Adapt to “easy” data; retain worst-case guarantees.

• Encode prior belief (more likely models experience lower regret).

• Automatically tune hyperparameters (i.e. online model selection).

Questions
• Is a given adaptive bound B achievable?

• VC-type theory for adaptive online learning?

Contribution
General theory of adaptive online learning:

1. Sufficient and in many settings necessary conditions for achieving given bound
Bn.

2. Generic strategy for deriving adaptive algorithms from desired adaptive regret
bounds.

Recovers a plethora of known adaptive regret bounds and enables new bounds including online
PAC-Bayes and online model selection.
Works in abstract settings such as when F is nonparametric!

Setting

For t = 1, . . . , n :

• Nature provides input instance xt ∈ X

• Learner predicts ŷt ∈ Y

• Nature provides label yt ∈ Y

• Learner suffers loss `(ŷt, yt)

Regret

Measure performance through regret against comparator f ∈ F :

Regn(f) =
∑n
t=1 `(ŷt, yt)−

∑n
t=1 `(f(xt), yt)

Adaptive Regret Bound

Upper bound Bn on Regn depending on the data, model, or both:

Regn(f) ≤ Bn(f | x1:n, y1:n).

Certifying Achievability
Given an adaptive regret bound Bn, play an adaptive online learning game wherein nature tries
to maximize the gap between the regret we experience and the proposed regret bound Bn.

Minimax Value for Adaptive Learning

Bn is achievable if and only if

An(F ,Bn) , inf
Learner
Strategy

sup
Adversary
Strategy

sup
f∈F

[Regn(f)− Bn(f | x1:n, y1:n)] ≤ 0.

Definition: Tree

An X -valued tree of depth n is a
sequence (x1, . . . ,xn) of mappings
xt : {±1}t−1 → X .

Definition: Offset Sequential Rademacher Complexity

Rn(F ,Bn) , sup
x,y

Eε sup
f∈F

{
2
∑n
t=1 εtf(xt(ε))︸ ︷︷ ︸

Rademacher average

− Bn(f | x1:n(ε),y1:n(ε))︸ ︷︷ ︸
Offset

}

Supremum is over X - and Y-valued trees. ε ∈ {±1}n is a sequence of Rademacher
random variables.

Main Theorem

An(F ,Bn) ≤ Rn(F ,Bn)

Corollary: Rn(F ,Bn) ≤ 0 implies Bn is achievable.

Strategy for bounding Rn:

1. Break class F into subsets via “complexity radius”, then control a certain
stochastic process Ri at each subset i.

2. GIven a bound Bi on the typical size of Ri establish tail bound for Ri above Bi.

3. “Dilate” Bi to Biθi and pass to a maximal inequality for final bound:

Maximal Inequality

Consider scalar-valued random variables Ri and “offsets” Bi for i ∈ N. If Ri have
mixed gaussian/exponential tail behavior:

One-Sided Tail Bound

P (Ri −Bi > τ) ≤ C1 exp(−τ2/(2σ2
i )) + C2 exp(−τsi)

then
E supi[Ri −Biθi] ≤ O(min σi + min s−1

i ),

for
θiBi = O(max{σi

√
log σi, s−1

i log(s−1
i )}+Bi).

• Ri typically stands for supremum of Rademacher average over subset i.

• Tighter tail bounds for Rademacher average imply better adaptive rates.

New Regret Bounds: Generic Results
Definition: Cover

Set V of R-valued trees is an α-cover of F ⊆ RX on x w.r.t. `p if

∀f ∈ F ,∀ε ∈ {±1}n,∃v ∈ V s.t.
n∑
t=1

(f(xt(ε))− vt(ε))p ≤ nαp.

Np(F , α,x) is the smallest α-cover.

Definition: Predictable Sequence

Sequence M1, . . . ,Mn where Mt depends only on x1:t, y1:t−1.

Predictable Sequences for Supervised Learning

Setting: Supervised learning with convex 1-Lipschitz loss.

Bn(f | x1:n) = infγ

{
K1

√
logn · logN2(F , γ/2, n) ·

(∑n
t=1 (f(xt)−Mt)2 + 1

)
+K2 logn

∫ γ

1/n

√
n logN2(F , δ, n)dδ + 2 logn+ 7

}

• Like [1], but predicts hypothesis behavior.

• Holds for nonparametric classes.

• Regret to Best vs. Regret to Fixed [2]: Fix a hypothesis f?, then
set Mt = f?(xt). Specialized bound yields O(1) regret against f? and
O
(√
n logN(log (n · logN))

)
against arbitrary expert.

Definition: Complexity Radius

Given hypothesis class F =
⋃
R≥1 F(R), with F(R) ⊆ F(R′) for R ≤ R′, have

complexity radius:
R(f) , inf{R : f ∈ F(R)}.

Online Model Selection / Hyperparameter Tuning

Setting: Supervised learning with convex 1-Lipschitz loss `.

Bn(f) = Õn

(
(Rn(F(2R(f))) + 1)

(
1 +

√
log
(

log(2R(f)) · Rn(F(2R(f)))
Rn(F(1))

)))

• Rn(F) , Rn(F , 0) (Sequential Rademacher complexity [Rakhlin-Sridharan-
Tewari‘11]).

• Enables unbounded hypothesis class F . Predict as though we knew model
complexity in advance at the price of logarithmic factor.

• Generalizes the unconstrained linear optimization bound [3] by taking R(f) =
‖f‖2. Also extends to smooth Banach spaces.

Recovering Existing Bounds
• Small loss bounds [4]
• Unconstrained linear optimization in Hilbert

spaces [3]
• Regret to best fixed expert vs. regret to

best [2]

• Predictable sequence bounds [Rakhlin-
Sridharan‘13]

• Quantile and second-order bounds for ex-
perts [6], Analogous to [Koolen-van Er-
ven‘15], [Luo-Schapire‘15]

New Regret Bounds: Specific Examples
Online PAC-Bayes

Experts setting: F = ∆N , Y = {y ∈ RN : ‖y‖∞ ≤ 1}, `(f, y) = 〈f, y〉.

Bn(f | y1:n) = O

(√
(KL(f |π) + logn)

∑n
t=1 Ei∼f 〈ei, yt〉

2 + (KL(f |π) + logn)
)

π is prior distribution over experts.

• Independent of the number of experts.

• Algorithm-independent.

• Depends quadratically on the expected loss of the expert we compare against.

• Addresses open question of obtaining algorithm-independent oracle-type variance
bound for experts.

• Framework also recovers quantile bound [6] without log factors.

Online Linear Optimization with Spectral Norm

OLO Setting: F = Y = {f ∈ Rd | ‖f‖2 ≤ 1}, `(f, y) = 〈f, y〉.

Bn(y1:n) = O
(√

d logn
(
‖
(∑n

t=1 yty
>
t

)1/2‖σ + 1
))

Algorithms
Extend the framework of online relaxations from [Rakhlin-Shamir-Sridharan‘l2].

Definition: Adaptive Relaxation

For a rate Bn a relaxation Reln :
⋃n
t=0 X t × Yt → R satisfies the initial condition,

Reln(x1:n, y1:n) ≥ − inf
f∈F
{
∑n
t=1 `(f(xt), yt) + Bn(f ;x1:n, y1:n)},

and the recursive condition,

Reln(x1:t−1, y1:t−1) ≥ sup
xt∈X

inf
qt∈∆(Y)

sup
yt∈Y

Eŷt∼qt
[`(ŷt, yt) + Reln(x1:t, y1:t)].

The relaxation’s corresponding strategy is

q̂t = arg min
qt∈∆(Y)

sup
yt∈Y

Eŷt∼qt [`(ŷt, yt) + Reln(x1:t, y1:t)],

which enjoys the adaptive regret bound

E[Regn(f)] ≤ E[Bn(f | x1:n, y1:n) + Reln(·)].
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