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Overview

Contextual bandits
For t = 1, . . . , T :

• Receive context xt ∈ X .
• Predict action at ∈ A := {1, . . . ,K}.
• Receive loss: `t(at).

Stochastic variant:
• Assume (xt, `t) ∼ D i.i.d.
• Learner has access to regression function class F : X ×A → R, where

E[`(a) | x] = f?(x, a)

for some f? ∈ F .
• Induced policies: πf (x) = argmina∈A f(x, a).

Goal: Low regret against best policy π? := πf? :

Reg :=
T∑
t=1

`t(at)−
T∑
t=1

`t(π?(xt)). (1)

Our question
• Previous results in contextual bandits assume F is given.
• Model selection [Vapnik’82]: Choose F in data-dependent fashion.

Can model selection guarantees be achieved in
contextual bandit learning?

More broadly, we seek to understand the algorithmic principles and fundamental
limits of model selection in interactive settings.

The model selection problem for contextual bandits
• For fixed F , typically expect Reg =

√
T comp(F), e.g. comp(F) = log|F|

for finite classes, comp(F) = d for d-dimensional linear classes.

• Assume that F is structured as a nested sequence of classes

F1 ⊂ F2 ⊂ . . . ⊂ FM = F ,

and define m? = min {m : f? ∈ Fm}.
• The model selection problem asks:

Given that m? is not known in advance, can we achieve regret scaling as
O(
√
T comp(Fm?)), rather than the less favorable O(

√
T comp(F))?

• Also acceptable: O(T 1−αcompα(Fm?)) for any α ≤ 1/2.

Our result: Model selection for linear contextual bandits
• We assume that each class Fm consists of linear functions of the form

Fm :=
{

(x, a) 7→ 〈β, φm(x, a)〉 | β ∈ Rdm
}
,

where φm : X ×A → Rdm is a fixed feature map.
• If m? is known, optimal regret is

√
dm?T [Chu et al.’11].

Main result: With no prior knowledge of m?, we achieve:

Reg = Õ(
√
dm?T + T 3/4)

Also achieve Reg = Õ(d1/3
m? T

2/3) , which is tighter for dm? ≤ T 1/4.

Only positive model selection result we are aware of for any contextual
bandit setting.

Overview of main result
Statistical assumptions:
• Nested maps: φm has φm−1 as first dm−1 features.
• Feature maps φm and losses `(a) are τ -subgaussian.
• For all m, Σm := 1

K

∑
a∈A Ex∼D

[
φm(x, a)φm(x, a)>

]
� γI.

Theorem

ModCB (Algorithm 2) with preprocessing guarantees that with probability at
least 1− δ,

Reg ≤


Õ
(
τ4

γ3 · (Kdm?)1/3(T logm?)2/3
)
, κ = 1/3.

Õ
(
τ3

γ2 ·K1/4(T logm?)3/4 + τ5

γ4 ·
√
KTdm? logm?

)
, κ = 1/4.

Estimating prediction loss with sublinear # samples
Key idea: We can evaluate if a bigger model would improve

error without actually learning the model!
Consider following “residual estimation” setup:
• Receive pairs (x1, y1), . . . , (xn, yn) i.i.d. from a distribution D ∈ ∆(Rd×R), where
x ∼ subGd(τ2) and y ∼ subG(σ2). Define Σ = E

[
xx>

]
.

• Suppose x can be partitioned into features x = (x(1), x(2)), where x(1) ∈ Rd1 and
x(2) ∈ Rd2 , and d1 + d2 = d. Define

β? = argmin
β∈Rd

E(〈β, x〉 − y)2
, and β?1 = argmin

β∈Rd1
E
(
〈β, x(1)〉 − y

)2
.

Goal: estimate the residual error incurred by restricting to features x(1):

E := E
(
〈β?1 , x(1)〉 − 〈β?, x〉

)2
.

Algorithm 1 EstimateResidual
Inputs: Examples {(xs, ys)}ns=1, second moment matrix estimates Σ̂ ∈ Rd×d,
and Σ̂1 ∈ Rd1×d1 .
Define d2 = d− d1 and

R̂ = D̂† − Σ̂† where D̂ =
(

Σ̂1 0d1×d2

0d2×d1 0d2×d2

)
.

Return estimate

Ê = 1(
n
2
) ∑
s<t

〈
Σ̂1/2R̂xsys, Σ̂1/2R̂xtyt

〉
.

Theorem

Suppose we take Σ̂ and Σ̂1 to be the empirical second moment matrices formed
from m iid unlabeled samples. Then once m ≥ C(d+ log(2/δ))τ4/λmin(Σ),
EstimateResidual guarantees that with probability at least 1− δ,∣∣∣Ê − E∣∣∣ ≤ 1

2E + Õ

(
σ2τ4

λ2
min(Σ) ·

d1/2 log2(2d/δ)
n

+ τ6

λ4
min(Σ) ·

d log(2/δ)
m

)
.

• Generalizes sublinear “variance estimation” results of Dicker’14 and Kong and Valiant’18.
Improves sample complexity by estimating difference in loss rather than loss itself.

New model selection algorithm

Algorithm 2 ModCB (Model Selection for Contextual Bandits)
Input:

• Feature maps {φm(·, ·)}m∈[M ], where φm(x, a) ∈ Rdm , and time T ∈ N.
• Subgaussian parameter τ > 0, second moment parameter γ > 0.
• Failure prob. δ ∈ (0, 1), exploration param. κ ∈ (0, 1).

Definitions:
• Define δ0 = δ/10M2T 2 and µt = (K/t)κ ∧ 1.

• Define αm,t = C1 ·
(
τ6

γ4 · d
1/2
m log2(2dm/δ0)

Kκt1−κ + τ10

γ8 · dm log(2/δ0)
t

)
.

• Define Tmin
m = C2 ·

(
τ4

γ2 · dm log(2/δ0) + log
1

1−κ (2/δ0) +K
)

+ 1.

Initialization:
• m̂← 1. // Index of candidate policy class.

• Exp4-IX1 ← Exp4-IX(Π1, T, δ0).
• S ← {∅}. // Times at which uniform exploration takes place.

for t = 1, . . . , T do
Receive xt.
with probability 1− µt

Feed xt into Exp4-IX
m̂

and take at to be the predicted action.
Update Exp4-IX

m̂
with (xt, at, `t(at)).

otherwise
Sample at uniformly from A and let S ← S ∪ {t}.

/* Test whether we should move on to a larger policy class. */
Σ̂i ← 1

K

∑
a∈A

∑t
s=1 φ

i(xs, a)φi(xs, a)> for each i ≥ m̂.
Hi ← {(φi(xs, as), `(as))}s∈S for each i > m̂.
Ê
m̂,i
← EstimateResidual

(
Hi, Σ̂m̂, Σ̂i

)
for each i > m̂. // Gap estimate.

if there exists i > m̂ such that Ê
m̂,i
≥ 2αi,t and t ≥ Tmin

i then
Let m̂ be the smallest such i.
Re-initialize Exp4-IX

m̂
← Exp4-IX(Π

m̂
, T, δ0).

end if
end for

Proof sketch for main theorem.
• Assume m = 2 and κ = 1/4 for simplicity.
• Two cases based on whether f? ∈ F1 or f? ∈ F2.

Case 1:
• With high probability, algorithm never switches from class Π1.
• Total contribution to regret is Õ(

√
d1T ) from Exp4-IX and Õ(T 3/4)

from uniform exploration.
Case 2:

• Let T̂ denote the first round where m̂ = 2, or T if the algorithm never
advances. Then regret is bounded as

Reg ≤ O
(
T 3/4

)
+ Õ

(√
T̂ d1

)
+ T̂∆1,2 + Õ

(√
(T − T̂ )d2

)
,

where ∆i,j = L?i − L?j , and L?i = minπ∈Πi L(π).
• All that remains is to bound the gap ∆1,2.
• Since we didn’t switch until T̂ , EstimateResidual guarantees that

∆1,2T̂ ≤ Õ
(√
E1,2T̂

)
≤ Õ

(
T̂ 5/8d

1/4
2

)
≤ Õ

(
T 3/4 ∨

√
d2T̂

)
.

Only works due to sublinear loss estimation guarantee! With naive
estimator, any choice of µt and κ leads to vacuous guarantees!


